Abstract
In this work, experimental data is used to estimate the free parameters of dynamical systems intended to model motion profiles for a robotic system. The corresponding regression problem is formed as a constrained non-linear least squares problem. In our method, motions are generated via embedded optimization by combining dynamical movement primitives in a locally optimal way at each time step. Based on this concept, we introduce a model predictive control scheme which allows generalization over multiple encoded behaviors depending on the current position in the state space, while leveraging the ability to explicitly account for state constraints to the fulfillment of additional tasks such as obstacle avoidance. We present a numerical evaluation of our approach and a preliminary verification by generating grasping motions for the anthropomorphic Shadow Robot hand/arm platform.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hwang, J.H., Arkin, R., Kwon, D.S.: Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 2, 2003, pp. 1444–1449
Aleotti, J., Caselli, S.: Robust trajectory learning and approximation for robot programming by demonstration. Robot. Auton. Syst. 54(5), 409–413 (2006)
Schittkowski, K.: Numerical Data Fitting in Dynamical Systems. Kluwer Academic Publishers (2002)
Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp 1371–1394. Springer (2008)
Flash, T., Hogans, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)
Weitschat, R., Haddadin, S., Huber, F., Albu-Schauffer, A.: Dynamic optimality in real-time: a learning framework for near-optimal robot motions. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5636–5643 (2013)
Khansari-Zadeh, S.M., Billard, A.: A dynamical system approach to realtime obstacle avoidance. Auton. Robot. 32(4), 433–454 (2012)
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. IJRR 5(1), 90–98 (1986)
Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.: A comprehensive grasp taxonomy. In: RSS: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation (2009)
Shadow Robot Company, The shadow dextrous hand. [Online]. Available: http://www.shadowrobot.com/hand/
Bernardino, A., Henriques, M., Hendrich, N., Zhang, J.: Precision grasp synergies for dexterous robotic hands. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 62–67 (2013)
Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor primitives. In: Advances in Neural Information Processing Systems. MIT Press (2003)
Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans. Robot. 26(5), 800–815 (2010)
Khansari-Zadeh, S., Billard, A.: Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Trans. Robot. 27(5), 943–957 (2011)
Forte, D., Gams, A., Morimoto, J., Ude, A.: On-line motion synthesis and adaptation using a trajectory database. Robot. Auton. Syst. 60(10), 1327–1339 (2012)
Krug, R., Dimitrov, D.: Representing movement primitives as implicit dynamical systems learned from multiple demonstrations. In: Proceedings of the International Conference on Advanced Robotics, pp. 1–8 (2013)
Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)
Kormushev, P., Calinon, S., Caldwell, D.: Robot motor skill coordination with em-based reinforcement learning. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3232–3237 (2010)
Stulp, F., Schaal, S.: Hierarchical reinforcement learning with movement primitives. In: 11th IEEE-RAS International Conference on Humanoid Robots, 231–238 (2011)
Stulp, F., Theodorou, E., Buchli, J., Schaal, S.: Learning to grasp under uncertainty. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 5703–5708 (2011)
Kober, J, Peters, J.: Policy search for motor primitives in robotics. Mach. Learn. 84(1-2), 171–203 (2011)
Nemec, B., Vuga, R., Ude, A.: Efficient sensorimotor learning from multiple demonstrations. Adv. Robot. 27(13), 1023–1031 (2013)
Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 763–768 (2009)
Matsubara, T., Hyon, S., Morimoto, J.: Learning stylistic dynamic movement primitives from multiple demonstrations. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1277–1283 (2010)
Calinon, S., Li, Z., Alizadeh, T., Tsagarakis, N., Caldwell, D.: Statistical dynamical systems for skills acquisition in humanoids. In: IEEE-RAS International Conference on Humanoid Robots, 323–329 (2012)
Muelling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking movements in robot table tennis. IIJR 3, 263–279 (2013)
Gribovskaya, E., Khansari-Zadeh, S.M., Billard, A.: Learning non-linear multivariate dynamics of motion in robotic manipulators. IJRR 30(1), 80–117 (2011)
Hoffmann, H., Pastor, P., Park, D.-H., Schaal, S.: Biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2587–2592 (2009)
Gams, A., Nemec, B., Zlajpah, L., Wachter, M., Ijspeert, A., Asfour, T., Ude, A.: Modulation of motor primitives using force feedback: interaction with the environment and bimanual tasks. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 5629–5635 (2013)
Saveriano, M., Lee, D.: Point cloud based dynamical system modulation for reactive avoidance of convex and concave obstacles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5380–5387 (2013)
Raković, S.V., Mayne, D.Q.: Robust model predictive control for obstacle avoidance: discrete time case. In: Assessment and Future Directions of Nonlinear Model Predictive Control, pp 617–627. Springer (2007)
Shiller, Z., Sharma, S., Stern, I., Stern, A.: Online obstacle avoidance at high speeds. IJRR 32(9–10), 1030–1047 (2013)
Pecora, F., Cirillo, M., Dimitrov, D.: On mission-dependent coordination of multiple vehicles under spatial and temporal constraints. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5262– 5269 (2012)
Anderson, S., Karumanchi, S., Iagnemma, K.: Constraint-based planning and control for safe, semi-autonomous operation of vehicles. In: IEEE Intelligent Vehicles Symposium, pp. 383–388 (2012)
Wangmanaopituk, H.V.S., Kongprawechnon, W.: Collaborative nonlinear model-predictive motion planning and control of mobile transport robots for a highly flexible production system. Science Asia (2010)
Da Silva, M., Abe, Y., Popović, J.: Simulation of human motion data using short-horizon model-predictive control. Comput. Graph. Forum. 27(2), 371–380 (2008)
Khalil, H.: Nonlinear Systems. Prentice Hall (2002)
Rückert, E., d’Avella, A.: Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems. Front. comput. Neurosci. 7 (2013)
Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)
Houska, B., Ferreau, H., Diehl, M.: ACADO Toolkit – an open source framework for automatic control and dynamic optimization. Opt. Control Appl. Methods 32(3), 298–312 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krug, R., Dimitrov, D. Model Predictive Motion Control based on Generalized Dynamical Movement Primitives. J Intell Robot Syst 77, 17–35 (2015). https://doi.org/10.1007/s10846-014-0100-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-014-0100-3