Abstract
This paper presents a novel solution for micro aerial vehicles (MAVs) to autonomously search for and land on an arbitrary landing site using real-time monocular vision. The autonomous MAV is provided with only one single reference image of the landing site with an unknown size before initiating this task. We extend a well-known monocular visual SLAM algorithm that enables autonomous navigation of the MAV in unknown environments, in order to search for such landing sites. Furthermore, a multi-scale ORB feature based method is implemented and integrated into the SLAM framework for landing site detection. We use a RANSAC-based method to locate the landing site within the map of the SLAM system, taking advantage of those map points associated with the detected landing site. We demonstrate the efficiency of the presented vision system in autonomous flights, both indoor and in challenging outdoor environment.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Achtelik, M., Achtelik, M., Weiss, S., Siegwart, R.: Onboard imu and monocular vision based control for mavs in unknown in- and outdoor environments. In: Proceedings 2011 the IEEE International Conference on Robotics and Automation (2011)
Bloesch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: Proceedings 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 21–28 (2010)
Bouguet, J.Y.: Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc (2004)
Castle, R.O., Klein, G., Murray, D.W.: Combining monoSLAM with object recognition for scene augmentation using a wearable camera. Image Vis. Comput. 28(11), 1548–1556 (2010)
Castle, R.O., Murray, D.W.: Keyframe-based recognition and localization during video-rate parallel tracking and mapping. Image Vis. Comput. 29(8), 524–532 (2011). doi:10.1016/j.imavis.2011.05.002
Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: European Conference on Computer Vision (2010)
Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S.: A vision-based guidance system for UAV navigation and safe landing using natural landmarks. J. Intell. Robot. Syst. 57(1–4), 233–257 (2010)
Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proc 9th IEEE Int. Conf. on Computer Vision, pp. 1403–1410 (2003)
Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)
Garcia-Pardoa, P.J., Sukhatmeb, G.S., Montgomery, J.F.: Towards vision-based safe landing for an autonomous helicopter. Robot. Auton. Syst. 38(1), 19–29 (2002)
Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: 2009 IEEE International Conference on Robotics and Automation, pp. 2878–2883 (2009)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007)
Lu, H., Zheng, Z.: Two novel real-time local visual features for omnidirectional vision. Pattern Recog. 43(12), 3938–3949 (2010)
Lu, H., Zhang, H., Yang, S., Zheng, Z.: Camera parameters auto-adjusting technique for robust robot vision. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1518–1523 (2010)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)
Mondragón, I.F., Campoy, P., Martínez, C., Olivares-Méndez, M.A.: 3D pose estimation based on planar object tracking for UAVs control. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 35–41 (2010)
Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33(1–2), 21–39 (2012)
Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV) (2011)
Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: Open-Source Software Workshop of the Int. Conf. on Robotics and Automation, Kobe, Japan (2009)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proc. 9th European Conference on Computer Vision (ECCV’06), Graz (2006)
Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–380 (2003)
Scherer, S.A., Dube, D., Komma, P., Masselli, A., Zell, A.: Robust real-time number sign detection on a mobile outdoor robot. In: Proceedings of the 6th European Conference on Mobile Robots (ECMR 2011), Orebro, Sweden (2011)
Scherer, S.A., Dube, D., Zell, A.: Using depth in visual simultaneous localisation and mapping. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5216–5221 (2012)
Schauwecker, K., Ke, N.R., Scherer, S.A., Zell, A.: Markerless visual control of a quad-rotor micro aerial vehicle by means of on-board stereo processing. In: Autonomous Mobile System Conference (AMS), pp. 11–20 Springer (2012)
Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: 2011 IEEE International Conference on Robotics and Automation, pp. 20–25 (2011)
Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Field Robot. 28(6), 854–874 (2011)
Yang, S., Scherer, S.A., Zell, A: An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. J. Intell. Robot. Syst. 69(1–4), 499–515 (2013)
Yang, S., Scherer, S.A., Schauwecker, K., Zell, A.: Onboard monocular vision for landing of an MAV on a landing site specified by a single reference image. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS’13), pp. 317–324 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, S., Scherer, S.A., Schauwecker, K. et al. Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site Using Onboard Monocular Vision. J Intell Robot Syst 74, 27–43 (2014). https://doi.org/10.1007/s10846-013-9906-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-013-9906-7