[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site Using Onboard Monocular Vision

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel solution for micro aerial vehicles (MAVs) to autonomously search for and land on an arbitrary landing site using real-time monocular vision. The autonomous MAV is provided with only one single reference image of the landing site with an unknown size before initiating this task. We extend a well-known monocular visual SLAM algorithm that enables autonomous navigation of the MAV in unknown environments, in order to search for such landing sites. Furthermore, a multi-scale ORB feature based method is implemented and integrated into the SLAM framework for landing site detection. We use a RANSAC-based method to locate the landing site within the map of the SLAM system, taking advantage of those map points associated with the detected landing site. We demonstrate the efficiency of the presented vision system in autonomous flights, both indoor and in challenging outdoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Achtelik, M., Achtelik, M., Weiss, S., Siegwart, R.: Onboard imu and monocular vision based control for mavs in unknown in- and outdoor environments. In: Proceedings 2011 the IEEE International Conference on Robotics and Automation (2011)

  2. Bloesch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: Proceedings 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 21–28 (2010)

  3. Bouguet, J.Y.: Camera Calibration Toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc (2004)

  4. Castle, R.O., Klein, G., Murray, D.W.: Combining monoSLAM with object recognition for scene augmentation using a wearable camera. Image Vis. Comput. 28(11), 1548–1556 (2010)

    Article  Google Scholar 

  5. Castle, R.O., Murray, D.W.: Keyframe-based recognition and localization during video-rate parallel tracking and mapping. Image Vis. Comput. 29(8), 524–532 (2011). doi:10.1016/j.imavis.2011.05.002

    Article  Google Scholar 

  6. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)

  7. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: European Conference on Computer Vision (2010)

  8. Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S.: A vision-based guidance system for UAV navigation and safe landing using natural landmarks. J. Intell. Robot. Syst. 57(1–4), 233–257 (2010)

    Article  MATH  Google Scholar 

  9. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proc 9th IEEE Int. Conf. on Computer Vision, pp. 1403–1410 (2003)

  10. Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)

  11. Garcia-Pardoa, P.J., Sukhatmeb, G.S., Montgomery, J.F.: Towards vision-based safe landing for an autonomous helicopter. Robot. Auton. Syst. 38(1), 19–29 (2002)

    Article  Google Scholar 

  12. Grzonka, S., Grisetti, G., Burgard, W.: Towards a navigation system for autonomous indoor flying. In: 2009 IEEE International Conference on Robotics and Automation, pp. 2878–2883 (2009)

  13. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007)

  14. Lu, H., Zheng, Z.: Two novel real-time local visual features for omnidirectional vision. Pattern Recog. 43(12), 3938–3949 (2010)

    Article  MATH  Google Scholar 

  15. Lu, H., Zhang, H., Yang, S., Zheng, Z.: Camera parameters auto-adjusting technique for robust robot vision. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 1518–1523 (2010)

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  18. Mondragón, I.F., Campoy, P., Martínez, C., Olivares-Méndez, M.A.: 3D pose estimation based on planar object tracking for UAVs control. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 35–41 (2010)

  19. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: PIXHAWK: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robot. 33(1–2), 21–39 (2012)

    Article  Google Scholar 

  20. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  21. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV) (2011)

  22. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: Open-Source Software Workshop of the Int. Conf. on Robotics and Automation, Kobe, Japan (2009)

  23. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proc. 9th European Conference on Computer Vision (ECCV’06), Graz (2006)

  24. Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–380 (2003)

    Article  Google Scholar 

  25. Scherer, S.A., Dube, D., Komma, P., Masselli, A., Zell, A.: Robust real-time number sign detection on a mobile outdoor robot. In: Proceedings of the 6th European Conference on Mobile Robots (ECMR 2011), Orebro, Sweden (2011)

  26. Scherer, S.A., Dube, D., Zell, A.: Using depth in visual simultaneous localisation and mapping. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5216–5221 (2012)

  27. Schauwecker, K., Ke, N.R., Scherer, S.A., Zell, A.: Markerless visual control of a quad-rotor micro aerial vehicle by means of on-board stereo processing. In: Autonomous Mobile System Conference (AMS), pp. 11–20 Springer (2012)

  28. Shen, S., Michael, N., Kumar, V.: Autonomous multi-floor indoor navigation with a computationally constrained MAV. In: 2011 IEEE International Conference on Robotics and Automation, pp. 20–25 (2011)

  29. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  30. Yang, S., Scherer, S.A., Zell, A: An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. J. Intell. Robot. Syst. 69(1–4), 499–515 (2013)

    Article  Google Scholar 

  31. Yang, S., Scherer, S.A., Schauwecker, K., Zell, A.: Onboard monocular vision for landing of an MAV on a landing site specified by a single reference image. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS’13), pp. 317–324 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaowu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Scherer, S.A., Schauwecker, K. et al. Autonomous Landing of MAVs on an Arbitrarily Textured Landing Site Using Onboard Monocular Vision. J Intell Robot Syst 74, 27–43 (2014). https://doi.org/10.1007/s10846-013-9906-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9906-7

Keywords

Navigation