Abstract
Robot navigation in unknown environments requires an efficient exploration method. Exploration involves not only to determine towards the robot must to move but also motion planning, and simultaneous localization and mapping processes. The final goal of the exploration task is to build a map of the environment that previously the robot didn’t know. This work proposes the Voronoi Fast Marching method, that uses a Fast Marching technique on the Logarithm of the Extended Voronoi Transform of the environment’s image provided by sensors, to determine a motion plan. The Logarithm of the Extended Voronoi Transform imitates the repulsive electric potential from walls and obstacles, and the Fast Marching Method propagates a wave over that potential map. The trajectory is calculated by the gradient method. The robot is directed towards the most unexplored and free zones of the environment so as to be able to explore all the workspace. Finally, to build the environment map while the robot is carrying out the exploration task, a SLAM (Simultaneous Localization and Modelling)algorithm is implemented, the Evolutive Localization Filter (ELF) based on a differential evolution technique. The combination of these methods provide a new autonomous exploration strategy to construct consistent maps of 2D and 3D indoor environments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Borenstein, J., Koren, Y.: Histogramic in-motion mapping for mobile robot obstacle avoidance. IEEE J. Robot. 7(4), 535–539 (1991)
Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time euclidean distance transform algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 529–533 (1995)
Covello, P., Rodrigue, G.: A generalized front marching algorithm for the solution of the eikonal equation. J. Comput. Appl. Math. 156(2), 371–388 (2003)
Elfes, A.: Sonar-based real world mapping and navigation. IEEE J. Robot. Automat. 3(3), 249–265 (1987)
Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Comput. Mag. 22(6), 46–57 (1989)
Feder, H.S., Leonard, J.J., Smith, C.M.: Adaptive mobile robot navigation and mapping. Int. J. Rob. Res. 7(18), 650–668 (1999)
Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1997)
Garrido, S., Moreno, L., Blanco, D.: Voronoi diagram and Fast Marching applied to path planning. In: 2006 IEEE International Conference on Robotics and Automation, ICRA, pp. 3049–3054. IEEE, Piscataway (2006)
Garrido, S., Moreno, L., Abderrahim, M., Martin, F.: Path planning for mobile robot navigation using Voronoi diagram and fast marching. In: Proc of IROS’06, pp. 2376–2381, Beijing, October 2006
Howard, A., Kitchen, L.: Generating sonar maps in highly specular environments. In: Proceedings of the Fourth International Conference on Control, Automation, Robotics and Vision (1996)
Khatib, M., Chatila, R.: An extended potential field approach for mobile robot sensor-based motions. In: Proceedings of the IEEE Int. Conf. on Intelligent Autonomus Systems (1995)
Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of the IEEE Int. Conf. on Robotics and Automation, pp. 1398–1404 (2004)
Kuipers, B.: Navigation and mapping in large-scale space. AI Mag. 9, 25–43 (1988)
Kuipers, Y.B.B.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robot. Auton. Syst. 8, 47–63 (1991)
Latombe, J.-C.: Robot Motion Planning. Kluwer, Dordrecht (1991)
LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
Lee, W.: Spatial semantic hierarchy for a physical robot. Ph.D. dissertation, Department of Computer Sciences, The University of Texas (1996)
Lindemann, S.R., LaValle, S.M.: Simple and efficient algorithms for computing smooth, collision-free feedback laws. Int. J. Rob. Res. (in press)
Lindemann, S.R., LaValle, S.M.: Smooth feedback for car-like vehicles in polygonal environments. In: Proceedings IEEE International Conference on Robotics and Automation (2007)
Mataric, M.: Integration of representation into goal-driven behavior-based robots. IEEE Trans. Robot. Autom. 3, 304–312 (1992)
Mauch, S.: Efficient algorithms for solving static hamilton-jacobi equations. Ph.D. dissertation, California Inst. of Technology (2003)
Melchior, P., Orsoni, B., Laviale, O., Poty, A., Oustaloup, A.: Consideration of obstacle danger level in path planning using A* and Fast Marching optimisation: comparative study. J. Signal Process. 83(11), 2387–2396 (2003)
Moravec, H., Elfes, A.: High resolution maps from wide angle sonar. In: Proceedings of the IEEE International Conference on Robotics and Automation (1985)
Moreno, L., Garrido, S., Martin, F.: E-SLAM solution to the grid-based Localization and Mapping problem. In: 2007 IEEE International Symposium on Intelligent Signal Processing (WISP’2007), pp. 897–903, Alcala Henares 2007
Oriolo, G., Venditteli, M., Ulivi, G.: On-line map-building and navigation for autonomous mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2900–2906 (1995)
Oriolo, G., Ulivi, G., Vendittelli, M.: Fuzzy maps: a new tool for mobile robot perception and planning. J. Robot. Syst. 3(14), 179–197 (1997)
Philippsen, R., Siegwart, R.: An interpolated dynamic navigation function. In: 2005 IEEE Int. Conf. on Robotics and Automation (2005)
Poty, A., Melchior, P., Oustaloup, A.: Dynamic path planning by fractional potential. In: Second IEEE International Conference on Computational Cybernetics (2004)
Silva, E.P., Engel, P., Trevisan, M., Idiart, M.: Exploration method using harmonic functions. J. Robot. Auton. Syst. 40(1), 25–42 (2002)
Silva, E.P., Engel, P., Trevisan, M., Idiart, M.: Autonomous learning architecture for environmental mapping. J. Intell. Robot. Syst. 39, 243–263 (2004)
Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., Lane, D.: Path planning for autonomous underwater vehicles. IEEE Trans. Robot. 23(2), 331–341 (2007)
Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: IEEE Int. Conf Robot and Autom, pp. 802–807 (1993)
Quinlan, S., Khatib, O.: Efficient distance computation between nonconvex objects. In: IEEE Int. Conf Robot and Autom, pp. 3324–3329 (1994)
Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)
Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U. S. A. 93(4), 1591–1595 (1996)
Sethian, J.A.: Theory, Algorithms, and Aplications of Level Set Methods for Propagating Interfaces. Acta Numerica, pp. 309–395. Cambridge University Press, Cambridge (1996)
Sethian, J.: Level Set Methods. Cambridge University Press, Cambridge (1996)
Thrun, S., Bücken, A.: Integrating grid-based and topological maps for mobile robot. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pp. 944–950 (1996)
Thrun, S., Bücken, A.: Learning maps or indoor mobile robot navigation. CMU-CS-96-121, Tech. Rep., Carnegie Mellon University, Pittsburgh, PA (1996)
Yamauchi, B.: A frontier-based exploration for autonomous exploration. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151. Monterey, CA (1997)
Yamauchi, B., Schultz, A., Adams, W., Graves, K.: Integrating map learning, localization and planning in a mobile robot. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 331–336. Gaithersburg, MD (1998)
Yang, L., LaValle, S.M.: A framework for planning feedback motion strategies based on a random neighborhood graph. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 544–549 (2000)
Yatziv, L., Bartesaghi, A., Sapiro, G.: A fast O(n) implementation of the fast marching algorithm. J. Comput. Phys. 212, 393–399 (2005)
Zelek, J.: A framework for mobile robot concurrent path planning and execution in incomplete and uncertain environments. In: Proceedings of the AIPS-98 Workshop on Integrating Planning, Scheduling and Execution in Dynamic and Uncertain Environments. Pittsburgh, PA (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Garrido, S., Moreno, L. & Blanco, D. Exploration of 2D and 3D Environments using Voronoi Transform and Fast Marching Method. J Intell Robot Syst 55, 55–80 (2009). https://doi.org/10.1007/s10846-008-9293-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-008-9293-7