[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fault-Tolerant Gait Planning for a Hexapod Robot Walking over Rough Terrain

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Multi-legged robots need fault-tolerant gaits if one of attached legs suffers from a failure and cannot have normal operation. Moreover, when the robots with a failed leg are walking over rough terrain, fault-tolerance should be combined with adaptive gait planning for successful locomotion. In this paper, a strategy of fault-tolerant gaits is proposed which enables a hexapod robot with a locked joint failure to traverse two-dimensional rough terrain. This strategy applies a Follow-The-Leader (FTL) gait in post-failure walking, having the advantages of both fault-tolerance and terrain adaptability. The proposed FTL gait can produce the maximum stride length for a given foot position of a failed leg and better ditch-crossing ability than the previous fault-tolerant gaits. The applicability of the proposed FTL gait is verified using computer graphics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen, W., Low, K.H., Yeo, S.H.: Adaptive gait planning for multi-legged robots with an adjustment of center-of-gravity. Robotica 17(4), 391–403 (1999)

    Article  Google Scholar 

  2. Choi, B.S., Song, S.M.: Fully automated obstacle-crossing gaits for walking machine. IEEE Trans. Syst. Man Cybern. 18(6), 952–964 (1989)

    Article  Google Scholar 

  3. Chu, S.K.K., Pang, G.K.H.: Comparison between different model of hexapod robot in fault-tolerant gait. IEEE Trans. Syst. Man Cybern. A. 32(6), 752–756 (2002)

    Article  Google Scholar 

  4. English, J.D., Maciejewski, A.A.: Robotic workspaces after a free-swinging failure. J. Intell. Robot. Syst. 19(1), 55–72 (1997)

    Article  Google Scholar 

  5. Estremera, J., Gonzalez de Santos, P.: Generating continuous free crab gaits for quadruped robots on irregular terrain. IEEE Trans. Robot. 21(6), 1067–1076 (2005)

    Article  Google Scholar 

  6. Gonzalez de Santos, P., Jimenez, M.A.: Generation of discontinuous gaits for quadruped walking vehicles. J. Robot. Syst. 12(9), 599–611 (1995)

    Article  MATH  Google Scholar 

  7. Gonzalez de Santos, P., Jimenez, M.A.: Path tracking with quadruped walking machines using discontinuous gaits. Comput. Electr. Eng. 21(6), 383–396 (1995)

    Article  Google Scholar 

  8. Hassan, M., Notash, L.: Design modification of parallel manipulators for optimum fault tolerance to joint jam. Mech. Mach. Theory 40(5), 559–577 (2005)

    Article  MATH  Google Scholar 

  9. Lewis, C.L., Maciejewski, A.A.: Fault tolerant operation of kinematically redundant manipulators for locked joint failures. IEEE Trans. Robot. Autom. 13(4), 622–629 (1997)

    Article  Google Scholar 

  10. Lin, J.N., Song, S.M.: Modeling gait transitions of quadrupeds and their generalization with CMAC neural networks. IEEE Trans. Syst. Man Cybern. C 32(3), 177–189 (2002)

    Article  Google Scholar 

  11. McGhee, R.B., Iswandhi, G.I.: Adaptive locomotion of a multilegged robot over rough terrain. IEEE Trans. Syst. Man Cybern. 9(4), 176–182 (1979)

    Article  Google Scholar 

  12. Miao, S., Howard, D.: Optimal tripod gait generation for hexapod walking machines. Robotica 18(6), 639–649 (2000)

    Article  Google Scholar 

  13. Pal, P.K., Jayarajan, K.: Generation of free gait-a graph search approach. IEEE Trans. Robot. Autom. 7(3), 299–305 (1991)

    Article  Google Scholar 

  14. Qiu, X.D., Song, S.M.: A strategy of wave gait for a walking machine traversing a rough planar terrain. J. Mech. Transm. Autom. Des. 111(4), 471–478 (1989)

    Article  Google Scholar 

  15. Rebula, J.R., Neuhaus, P.D., Bonnlander, B.V., Johnson, M.J., Pratt, J.E.: A controller for the littledog quadruped walking on rough terrain. In: IEEE International Conference on Robotics and Automation, pp. 1467–1473. IEEE, Piscataway (2007)

    Google Scholar 

  16. Song, S.M., Waldron, K.J.: An analytical approach for gait study and its application on wave gaits. Int. J. Rob. Res. 6(2), 60–70 (1987)

    Article  Google Scholar 

  17. Yang, J.M.: Gait synthesis for hexapod robots with a locked joint failure. Robotica 23(6), 701–708 (2005)

    Article  Google Scholar 

  18. Yang, J.M.: Fault-tolerant crab gaits and turning gaits for a hexapod robot. Robotica 24(2), 269–270 (2006)

    Article  Google Scholar 

  19. Yang, J.M.: Kinematic constraints on fault-tolerant gaits for a locked joint failure. J. Intell. Robot. Syst. 45(4), 323–342 (2006)

    Article  Google Scholar 

  20. Yang, J.M., Kim, J.H.: Fault-tolerant locomotion of the hexapod robot. IEEE Trans. Syst. Man Cybern. B 28(1), 109–116 (1998)

    Article  MathSciNet  Google Scholar 

  21. Zhu, J., Sun, D., Tso, S.K.: Development of a tracked climbing robot. J. Intell. Robot. Syst. 35(4), 427–444 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Min Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, JM. Fault-Tolerant Gait Planning for a Hexapod Robot Walking over Rough Terrain. J Intell Robot Syst 54, 613–627 (2009). https://doi.org/10.1007/s10846-008-9282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9282-x

Keywords

Navigation