[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Adaptable Oscillator-Based Controller for Autonomous Robots

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes a unique oscillator-based robot controller with learning abilities to effectively guide a team of robots operating in uncertain environments. To verify this, we designed four separate controllers and compared their performance in a series of tests in several different environments. The experiments used a team of three robots to explore arenas with variable lighting and different obstacle patterns, with a goal of having the team as a whole absorb as much light as possible. The four controllers were: a reactive controller, an oscillator with fixed parameters, an oscillator whose parameters changed based on the pattern of sensor information received, and an oscillator-based controller that used reinforcement learning. Experiments confirmed that the proposed method outperforms the others in all environments tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Orlovsky, G.N., Deliagina, T.G., Grillner, S.: Neuronal Control of Locomotion: from Mollusc to Man. Oxford University Press, Oxford (1999)

    Google Scholar 

  2. Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Auton. Robots. 19(3), 219–232 (2005). doi:10.1007/s10514-005-4051-1

    Article  Google Scholar 

  3. Iida, S., Kondo, T., Ito, K.: An environmental adaptation mechanism for a biped walking robot control based on elicitation of sensorimotor constraints, from animals to animats 9. In: Lect. Notes Comput. Sci., vol. 4095, pp. 174–184. Springer (2006)

  4. Quinn, R.D., Espenschied, K.S.: Control of a hexapod robot using a biologically inspired neural network. In: Beer, R. D., Ritzmann, R.E., McKenna, T. (eds.) Biological Neural Networks in Invertebrate Neuroethology and Robotics, pp. 365–381. Academic Press, San Diego, California, ISBN 0-12-084728-0 (1993)

    Google Scholar 

  5. Sfakiotakis, M., Tsakiris, D.P.: Neuromuscular control of reactive behaviors for undulatory robots. Neurocomputers 70(10–12), 1907–1913 (2007)

    Article  Google Scholar 

  6. Lu, Z., Ma, S., Li, B., Wang, Y.: Design of a snake-like robot controller with cyclic inhibitory CPG model. In: 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 35–40 (2005)

  7. Olfati-Saber, R.: Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks. In: 2006 45th IEEE Conference Decision and Control, pp. 5060–5066 (2006)

  8. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007). doi:10.1109/JPROC.2006.887293

    Article  Google Scholar 

  9. Wischmann, S., Hülse, M., Knabe, J.F., Pasemann, F.: Synchronization of internal neural rhythms in multi-robotic systems. Adapt. Behav. 14(2), 117–127 (2006), Adaptive Behavior—Animals, Animats, Software Agents, Robots, Adaptive Systems

    Article  Google Scholar 

  10. Duijn, M., Keijzer, F., Franken, D.: Principles of minimal cognition: casting cognition as sensorimotor coordination. Adapt. Behav. 14(2), 157–170 (2006). doi:10.1177/105971230601400207

    Article  Google Scholar 

  11. Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connect. Sci. 16(4), 249–266 (2004). doi:10.1080/09540090412331314795

    Article  Google Scholar 

  12. Watanabe, K., Izumi, K., Maki, J., Fujimoto, K.: A fuzzy behavior-based control for mobile robots using adaptive fusion units. J. Intell. Robot. Syst. 42(1), 27–49 (2005). doi:10.1007/s10846-004-3025-4

    Article  Google Scholar 

  13. Pearce, J.L., Powers, B., Hess, C., Rybski, P.E., Stoeter, S.A., Papanikolopoulos, N.: Using virtual pheromones and cameras for dispersing a team of multiple miniature robots. J. Intell. Robot. Syst. 45(4), 307–321 (2006). doi:10.1007/s10846-006-9038-4

    Article  Google Scholar 

  14. Arkin, R.: Behavior-Based Robotics. MIT, Cambridge, MA (1998)

    Google Scholar 

  15. Gu, D., Yang, E.: Fuzzy policy reinforcement learning in cooperative multi-robot systems. J. Intell. Robot. Syst. 48(1), 7–22 (2007). doi:10.1007/s10846-006-9103-z

    Article  Google Scholar 

  16. Clark, M.R., Anderson, G.T., Skinner, R.D.: Coupled oscillator control of autonomous mobile robots. Auton. Robots 9(2), 189–198 (2000). doi:10.1023/A:1008922502387

    Article  Google Scholar 

  17. Qi, B.H., Anderson, G.T.: A systematic approach to parameter design for a coupled oscillator controller. In: IEEE International Conference on Robotics and Automation, Seoul (2001, April)

  18. Anderson, G.T., Cheng, G.: A sensor-based robot controller for autonomous exploration of unknown environments. J. Intell. Autom. Soft Comput. 9(2), 113–120 (2003)

    Google Scholar 

  19. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT, Cambridge, MA (1998)

    Google Scholar 

  20. Fernández, F., Borrajo, D., Parker, L.E.: A reinforcement learning algorithm in cooperative multi-robot domains. J. Intell. Robot. Syst. 43(2–4), 161–174 (2005)

    Article  Google Scholar 

  21. Gu, D., Hu, H.: Integration of coordination architecture and behavior fuzzy learning in quadruped walking robots. IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 37(4), 670–681 (2007)

    Article  Google Scholar 

  22. Kulkarni, P., Goswami, D., Guha, P., Dutta, A.: Path planning for a statically stable biped robot using PRM and reinforcement learning. J. Intell. Robot. Syst. 47(3), 197–214 (2006). doi:10.1007/s10846-006-9071-3

    Article  Google Scholar 

  23. Ng, Y., A.W., Harada, D., Russell, S.: Policy invariance under reward transformations: theory and application to reward shaping. In: Proceedings of the Sixteenth International Conference on Machine Learning (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary T. Anderson.

Additional information

This material is based upon work supported in part by the U.S. Army Research Office under grant/contract number DAAG55-98-1-0011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G.T., Yang, Y. & Cheng, G. An Adaptable Oscillator-Based Controller for Autonomous Robots. J Intell Robot Syst 54, 755–767 (2009). https://doi.org/10.1007/s10846-008-9287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-008-9287-5

Keywords

Navigation