Abstract
Automated Guided Vehicles (AGVs) are essential elements of manufacturing intralogistics and material handling. Improving the position accuracy along the AGV trajectory allows the vehicle to work on narrower aisles with lower error tolerance. Despite the increasing number of papers in AGVs and mobile robots’ position control research area, there is a lack of curatorial work presenting and analyzing the control strategies applied in the problem domain. Therefore, the main objective is to analyze the published researches of the past seven years on the position control of AGVs to recognize research patterns, gaps, and tendencies, outlining the research field. The paper proposes a systematic literature review to investigate the research field from the controller design perspective. Its protocol and procedures are presented in detail. Four main research topics were addressed: the control strategies used in the AGV position control problem, how the literature presents the AGV operating requirement of position accuracy, how the literature validate the proposed controller and present their results regarding the system’s position accuracy, and the technological tendencies the proposed solutions reveals. Besides, within the main topics, other points were investigated, such as the AGV application area, the considered mathematical model, the sensors and guidance system used, and the maximum payload of the vehicle and operation under different load conditions. The data synthesis shows the predominant control strategies applied to the problem and the interaction among distinct control theory areas, indicating a notable interaction of Intelligent Control techniques to the other strategies. The paper’s contributions are using a systematic literature review method over the AGV position control publications, presenting an overview of the research area, analyzing the research question topics from selected articles, and proposing a research agenda.
Similar content being viewed by others
Data Availability Statement
All data and material is available upon request.
References
Abdelhakim, G., & Abdelouahab, H. (2019). A new approach for controlling a trajectory tracking using intelligent methods. Journal of Electrical Engineering& Technology, 14(3), 1347–1356.
Aguiar, G. T., Oliveira, G. A., Tan, K. H., Kazantsev, N., & Setti, D. (2019). Sustainable implementation success factors of AGVs in the brazilian industry supply chain management. Procedia Manufacturing, 39, 1577–1586.
Alakshendra, V., & Chiddarwar, S. S. (2016). A robust adaptive control of mecanum wheel mobile robot: simulation and experimental validation. In Proceedings of the 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, Daejeon, Korea (pp. 5606–5611).
Ammar, H.H., & Azar, A.T. (2020). Robust path tracking of mobile robot using fractional order PID controller. In A. E. Hassanien, A. T. Azar, T. Gaber, R. Bhatnagar, M. F. Tolba (eds) Proceedings of the 2020 international conference on advanced machine learning technologies and applications (AMLTA 2019). Springer International Publishing, Cham (pp. 370–381).
Anavatti, S. G., Santoso, F., & Garratt, M. A. (2015). Progress in adaptive control systems: past, present, and future. In Proceedings of the 2015 international conference on advanced mechatronics, intelligent manufacture, and industrial automation (ICAMIMIA). IEEE, Surabaya, India (pp. 1–8).
Andreev, A. S., & Peregudova, O. A. (2020). On global trajectory tracking control for an omnidirectional mobile robot with a displaced center of mass. Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 16(1), 115–131.
Arkin, R. C. (1998). Behavior-based robotics. Cambridge, USA: MIT Press.
Armesto, L., Girbés, V., Sala, A., Zima, M., & Šmídl, V. (2015). Duality-based nonlinear quadratic control: Application to mobile robot trajectory-following. IEEE Transactions on Control Systems Technology, 23(4), 1494–1504.
Başçi, A., & Derdiyok, A. (2014). Real-time velocity and direction angle control of an automated guided vehicle. International Journal of Robotics and Automation, 29, 227–233.
Bae, H. Y., Choe, R., Park, T., & Ryu, K. R. (2011). Comparison of operations of AGVs and ALVs in an automated container terminal. Journal of Intelligent Manufacturing, 22(3), 413–426.
Bai, G., Liu, L., Meng, Y., Luo, W., Gu, Q., & Wang, J. (2019). Path tracking of wheeled mobile robots based on dynamic prediction model. IEEE Access, 7, 39690–39701. https://doi.org/10.1109/ACCESS.2019.2903934
Bai, H., Gao, J., Sun, X., & Yan, W. (2019). Model predictive visual trajectory-tracking control of wheeled mobile robots. In Proceedings of the 2019 IEEE 28th international symposium on industrial electronics (ISIE). IEEE (pp. 569–574), https://doi.org/10.1109/ISIE.2019.8781161.
Bao, T., Yuan, P., Wang, T., Chen, D., Shi, Z., Li, Y., & Lai, T. (2014). Application and experiment of tracking control method for AGV. In Proceedings of the 2014 international conference on multisensor fusion and information integration for intelligent systems (MFI 2014). IEEE (pp. 1–6).
Bao-Cang, D. (2010). Modern predictive control (1st ed.). CRC Press.
Bascetta, L., Magnani, G., Rocco, P., & Zanchettin, A. M. (2009). Design and implementation of the low-level control system of an all-terrain mobile robot. In Proceedings of the 2009 international conference on advanced robotics, IEEE, Munich, Germany. (pp 1–6).
Berman, S., Schechtman, E., & Edan, Y. (2009). Evaluation of automatic guided vehicle systems. Robotics and Computer-Integrated Manufacturing, 25(3), 522–528.
Bhattacharyya, S. P., & Keel, L. H. (1995). Robust control: the parametric approach. In A. Ichikawa & K. Furuta (Eds.), IFAC postprint volume: Advances in control education 1994 (pp. 49–52). Pergamon Press.
Blondin, M. J., Sáez, J. S., & Pardalos, P. M. (2019). Control engineering from classical to intelligent control theory—An overview. Computational Intelligence and Optimization Methods for Control Engineering (pp. 1–30). Springer Optimization and Its Applications.
Bostelman, R., Hong, T., & Cheok, G. (2015). Navigation performance evaluation for automatic guided vehicles. In Proceedings of the 2015 IEEE international conference on technologies for practical robot applications (TePRA), IEEE, Woburn, USA (pp. 1–6).
Boukens, M., Boukabou, A., & Chadli, M. (2017). Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots. Robotics and Autonomous Systems, 92, 30–40.
Brogan, W. L. (1991). Modern control theory (3rd ed.). Prentice Hall.
Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal on Robotics and Automation, 2(1), 14–23.
Bubnicki, Z. (2005). Modern control theory. Springer.
Bui, T. L. (2016). Decentralized motion control for omnidirectional mobile platform-tracking a trajectory using PD fuzzy controller. In V. H. Duy, T. T. Dao, I. Zelinka, H. S. Choi, & M. Chadli (Eds.), AETA 2015: Recent advances in electrical engineering and related sciences (pp. 803–819). Springer: Lecture Notes in Electrical Engineering.
Ceballos, N. D. M., Valencia, J. A., & Ospina, N. L. (2007). Performance metrics for robot navigation. In Proceedings of the 2007 electronics, robotics and automotive mechanics conference (CERMA), IEEE (pp. 518–523).
Chen, D., Yuan, P., Wang, T., Ma, F., Li, Y., Lai, T., & Han, W. (2014). Sectionalized tracking control and experiment of AGV. In Proceedings of the 2014 9th IEEE conference on industrial electronics and applications, IEEE, Hangzhou, China. (pp. 1645–1650).
Chen, D., Shi, Z., Yuan, P., Wang, T., Liu, Y., Lin, M., & Li, Z. (2016). Trajectory tracking control method and experiment of AGV. In Proceedings of the 2016 IEEE 14th international workshop on advanced motion control (AMC), IEEE, Auckland, New Zealand (pp. 24–29).
Chen, H. (2018). Terminal sliding mode tracking controller design for automatic guided vehicle. In IOP conference series: Materials science and engineering, proceedings of the 2017 international symposium on application of materials science and energy materials (SAMSE 2017), IOP Publishing (Vol. 322, p. 072035).
Chen, T., Xie, L., Han, Y., & Luo, J. (2018). Lane keeping control on mecanum wheeled omnidirectional vehicles using laser scanner. In Proceedings of the 2018 Chinese control and decision conference (CCDC), IEEE (pp. 3404–3409).
Chen, Z., Fu, J., Tu, X. W., Yang, A. L., & Fei, M. R. (2019). Real-time predictive sliding mode control method for AGV with actuator delay. Advances in Manufacturing, 7(4), 448–459.
Chen, Z., Liu, Y., He, W., Qiao, H., & Ji, H. (2020). Adaptive-neural-network-based trajectory tracking control for a nonholonomic wheeled mobile robot with velocity constraints. IEEE Transactions on Industrial Electronics, 68(6), 5057–5067.
Cheong, H. W., & Lee, H. (2018). Requirements of AGV (Automated Guided Vehicle) for SMEs (Small and Medium-sized Enterprises). Procedia Computer Science, 139, 91–94.
Cho, J. H., & Kim, Y. T. (2017). Design of autonomous logistics transportation robot system with fork-type lifter. International Journal of Fuzzy Logic and Intelligent Systems, 17(3), 177–186.
Chun-Fu, W., Xiao-Long, W., Qing-Xie, C., Xiao-Wei, C., & Guo-Dong, L. (2017). Research on visual navigation algorithm of AGV used in the small agile warehouse. In Proceedings of the 2017 Chinese automation congress (CAC), IEEE, Jinan, China (pp. 217–222).
Das, A., Kasemsinsup, Y., & Weiland, S. (2017). Optimal trajectory tracking control for automated guided vehicles. IFAC-PapersOnLine, 50(1), 303–308.
Dhaouadi, R., & Hatab, A. A. (2013). Dynamic modelling of differential-drive mobile robots using Lagrange and Newton-Euler methodologies: A unified framework. Advances in Robotics& Automation, 2(2), 1–7.
Dian, S., Han, J., Guo, R., Li, S., Zhao, T., Hu, Y., & Wu, Q. (2019). Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots. International Journal of Fuzzy Systems, 21(7), 2032–2042.
dos Reis, W. P. N., & Morandin Junior, O. (2021). Sensors applied to automated guided vehicle position control: A systematic literature review. The International Journal of Advanced Manufacturing Technology, 113(1), 21–34.
Dòria-Cerezo, A., Biel, D., Olm, J. M., & Repecho, V. (2019). Sliding mode control of a differential-drive mobile robot following a path. In Proceedings of the 2019 18th European control conference (ECC), IEEE, Naples, Italy (pp. 4061–4066).
Du, E., & Ren, Y. (2020). Research on control algorithm for laser guided AGV based on proximal policy. In Proceedings of the 2020 Asia-Pacific conference on image processing, electronics and computers (IPEC), IEEE (pp. 1–7).
Echelmeyer, W., Kirchheim, A., Lilienthal, A. J., Akbiyik, H., & Bonini, M. (2011). Performance indicators for robotics systems in logistics applications. In Proceedings of the IROS workshop on metrics and methodologies for autonomous robot teams in logistics (MMARTLOG), IEEE, San Francisco, USA (p. 55).
Echeverria, G., Lassabe, N., Degroote, A., & Lemaignan, S. (2011). Modular open robots simulation engine: MORSE. In Proceedings of the 2011 IEEE international conference on robotics and automation (ICRA), IEEE, Shanghai, China (pp. 46–51).
Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A., & Belgamo, A. (2016). Improvements in the StArt tool to better support the systematic review process. In Proceedings of the 20th international conference on evaluation and assessment in software engineering (EASE 2016), ACM, New York, USA (pp. 1–5).
Fateh, M. M., & Arab, A. (2014). Robust control of a wheeled mobile robot by voltage control strategy. Nonlinear Dynamics, 79(1), 335–348.
Feng, T., & Jiao, B. (2017). Research on AGV trajectory tracker based on fuzzy control. In D. Yue, C. Peng, D. Du, T. Zhang, M. Zheng, Q. Han (eds) Intelligent computing, networked control, and their engineering applications: Proceedings of ICSEE 2017, LSMS 2017, communications in computer and information science (Vol. 762, Springer, Singapore, pp. 23–32).
Fu, J., Tian, F., Chai, T., Jing, Y., Li, Z., & Su, C. Y. (2020). Motion tracking control design for a class of nonholonomic mobile robot systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(6), 2150–2156.
Goldberg, D. (2011). Huxley: A flexible robot control architecture for autonomous underwater vehicles. In Proceedings of the OCEANS 2011 IEEE-Spain, IEEE, Santander, Spain (pp. 1–10)
Gomes, M., Bássora, L., Morandin, O., & Vivaldini, K. C. T. (2016). PID control applied on a line-follower AGV using a RGB camera. In Proceedings of the 2016 IEEE 19th international conference on intelligent transportation systems (ITSC), IEEE (pp. 194–198).
Goodchild van Hilten, L. (2015). Why it’s time to publish research “failures”. https://www.elsevier.com/connect/scientists-we-want-your-negative-results-too, Available on December 02, 2021.
Goodwin, G. C., Graebe, S. F., & Salgado, M. E. (2001). Control system design (Vol. 240). New Jersey: Prentice Hall.
Goswami, N. K., & Padhy, P. K. (2016). Gain tuning of Lyapunov function based controller using PSO for mobile robot control. In Proceedings of the 11th international conference on industrial and information systems (ICIIS 2016), IEEE, Roorkee, India (pp. 295–299).
Gupta, V., Bendapudi, N., Kar, I., & Saha, S. K. (2018). Three-stage computed-torque controller for trajectory tracking in non-holonomic wheeled mobile robot. In Proceedings of the 2018 IEEE 15th international workshop on advanced motion control (AMC), IEEE, Tokyo, Japan (pp. 144–149).
Han, Y., Cheng, Y., & Xu, G. (2019). Trajectory tracking control of AGV based on sliding mode control with the improved reaching law. IEEE Access, 7, 20748–20755.
Hasan, S. F., & Alwan, H. M. (2020). Design of hybrid controller for the trajectory tracking of wheeled mobile robot with mecanum wheels. Journal of Mechanical Engineering Research and Developments, 43(5), 400–414.
Huang, J., Wen, C., Wang, W., & Jiang, Z. P. (2014). Adaptive output feedback tracking control of a nonholonomic mobile robot. Automatica, 50(3), 821–831.
Huang, L., Zhang, Q., Sun, L., & Sheng, Z. (2019). Robustness analysis of iterative learning control for a class of mobile robot systems with channel noise. IEEE Access, 7, 34711–34718.
Hwang, C. L., Hung, W. H., & Lee, Y. (2018a). Tracking design of omnidirectional drive service robot using hierarchical adaptive finite-time control. In Proceedings of the IECON 2018—44th annual conference of the ieee industrial electronics society, IEEE, Washington, DC, USA (pp. 5680–5685).
Hwang, C. L., Yang, C. C., & Hung, J. Y. (2018b). Path tracking of an autonomous ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control. IEEE Transactions on Fuzzy Systems, 26(2), 899–914.
Indri, M., Lachello, L., Lazzero, I., Sibona, F., & Trapani, S. (2019). Smart sensors applications for a new paradigm of a production line. Sensors, 19(3)
Jacobs, L., De Preter, A., Anthonis, J., Swevers, J., & Pipeleers, G. (2019). H\(\infty \) controller synthesis for AGV trajectory tracking using a linearized kinematic model. IFAC-PapersOnLine, 52(15), 61–66.
Kanjanawanishkul, K., Phoohuengkaeo, R., & Kumson, A. (2015). Development of an automated guided vehicle with omnidirectional mobility for transportation of lightweight loads. In MATEC web of conferences: Proceedings of the 2015 2nd international conference on mechatronics and mechanical engineering (ICMME 2015), EDP Sciences (Vol. 34, pp. 1–4).
Kar, A. K., Dhar, N. K., Chandola, R., Nawaz, S. F., & Verma, N. K. (2016). Trajectory tracking by automated guided vehicle using GA optimized sliding mode control. In Proceedings of the 11th international conference on industrial and information systems (ICIIS 2016), IEEE, Roorkee, India (pp. 71–76).
Kar, A. K., Dhar, N. K., Mishra, P. K., & Verma, N. K. (2019a). Relative vehicle displacement approach for path tracking adaptive controller with multisampling data transmission. IEEE Transactions on Emerging Topics in Computational Intelligence, 3(4), 322–336.
Kar, A. K., Dhar, N. K., & Verma, N. K. (2019b). Event-triggered sliding mode control based trajectory tracking in a cyber-physical space. Advances in Intelligent Systems and Computing, vol 798In N. K. Verma & A. K. Ghosh (Eds.), Computational Intelligence: Theories, Applications and Future Directions (Vol. I, pp. 199–211). Springer.
Karanayil, B., & Rahman, M. F. (2018). Artificial neural network applications in power electronics and electric drives. In M. H. Rashid (Ed.), Power Electronics Handbook (4th ed., pp. 1245–1260). Butterworth-Heinemann Elsevier.
Karl, J., & Astrom, B. W. (2008). Adaptive Control: Second Edition (2nd ed.). Dover Publications.
Kayacan, E., & Khanesar, M. A. (2016). Fuzzy neural networks for real time control applications (Vol. 720). Butterworth-Heinemann Elsevier.
Kim, D. H., & Kim, S. B. (2020). Path following control of automated guide vehicle using camera sensor. In: I. Zelinka, P. Brandstetter, T. T. Dao, V. H. Duy, & S. B. Kim (eds) Recent advances in electrical engineering and related sciences: Theory and application. Proceedings of the international conference on advanced engineering theory and applications, Springer, Cham, Lecture Notes in Electrical Engineering (Vol. 554, pp. 932–938).
Kim, D. H., Yim, H., Joe, W. Y., & Kim, S. B. (2018). Control system design of four wheeled independent steering automatic guided vehicles (AGV). In V. H. D. T. T. Dao, I. Zelinka, S. B. Kim, & T. T. Phuong (eds) Recent advances in electrical engineering and related sciences: Theory and application. Proceedings of the international conference on advanced engineering theory and applications (AETA 2017), Springer, Cham, Lecture Notes in Electrical Engineering (vol. 465, pp. 580–586).
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Tech. rep., Keele University, Department of Computer Science, Technical Report TR/SE-0401.
Kitchenham, B. A., Budgen, D., & Brereton, P. (2016). Evidence-based Software Engineering and Systematic Reviews (Vol. 4). CRC Press.
Kortenkamp, D., Simmons, R., & Brugali, D. (2016). Robotic systems architectures and programming. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 283–306). Springer: Springer Handbooks.
Kouvaritakis, B., & Cannon, M. (2016). Model predictive control: Classical. Robust and Stochastic: Advanced Textbooks in Control and Signal Processing, Springer International Publishing, Cham.
Lequesne, D. (2017). Predictive control (1st ed.). ISTE Press.
Li, L., Liu, Y. H., Jiang, T., Wang, K., & Fang, M. (2017). Adaptive trajectory tracking of nonholonomic mobile robots using vision-based position and velocity estimation. IEEE Transactions on Cybernetics, 48(2), 571–582.
Li, X., Luo, C., Xu, Y., & Li, P. (2016). A fuzzy PID controller applied in AGV control system. In Proceedings of the 2016 international conference on advanced robotics and mechatronics (ICARM), IEEE, Macau, China (pp. 555–560).
Li, Y., Huang, D., Feng, D., Zhang, L., Wu, X., Huang, S., & Huang, S. (2020). Tracking control algorithm based on fuzzy logic for batch-feeding AGV. In B. Duan, K. Umeda, & W. Hwang (eds) Proceedings of the seventh Asia international symposium on mechatronics, Springer, Singapore, Lecture Notes in Electrical Engineering (Vol. 588, pp. 564–573).
Li, Z., Deng, J., Lu, R., Xu, Y., Bai, J., & Su, C. Y. (2015). Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(6), 740–749.
Liao, J., Chen, Z., & Yao, B. (2019). Model-based coordinated control of four-wheel independently driven skid steer mobile robot with wheel-ground interaction and wheel dynamics. IEEE Transactions on Industrial Informatics, 15(3), 1742–1752.
Liendro, T., & Zudaire, S. (2020). Hybrid control from scratch: A design methodology for assured robotic missions. arXiv preprint arXiv:200411258.
Lima, T. A., do Nascimento Forte, M. D., Nogueira, F. G., Torrico, B. C., & de Paula, A. R. (2016). Trajectory tracking control of a mobile robot using lidar sensor for position and orientation estimation. In Proceedings of the 12th IEEE international conference on industry applications (INDUSCON 2016), IEEE, Curitiba, Brazil (pp. 1–6).
Lin, M., Yongsheng, Y., & Jun, Z. (2018). Design and simulation of trajectory tracking controller based on fuzzy sliding mode control for. In Proceedings of the 2018 international symposium in sensing and instrumentation in IoT Era (ISSI), IEEE, Shanghai, China (pp. 1–5).
Liu, J. (2018). Intelligent Control Design and MATLAB Simulation. Springer Nature: Tsinghua University Press.
Liu, K., Gao, H., Ji, H., & Hao, Z. (2020a). Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots. International Journal of Control, Automation and Systems, 18(5), 1288–1298.
Liu, W., Wang, X., & Liang, S. (2020b). Trajectory tracking control for wheeled mobile robots based on a cascaded system control method. In Proceedings of the 46th annual conference of the IEEE industrial electronics society (IECON 2020), IEEE, Singapore (pp. 396–401).
Mahmoud, M. S., & Hassanine, A. M. (2017). Modeling and control design of differentially steered wheeled mobile robot. In Proceedings of the IECON 2017—43rd annual conference of the IEEE industrial electronics society, IEEE (pp. 3057–3062).
Matarić, M. J. (2007). The robotics primer. Intelligent Robotics and Autonomous Agents series: MIT Press, Cambridge, USA.
Miah, S., Shaik, F., & Chaoui, H. (2017). Universal dynamic tracking control law for mobile robot trajectory tracking. In Proceedings of the 2017 IEEE international conference on industrial technology (ICIT), IEEE, Toronto, Canada (pp. 896–901).
Ming, C., Guo, M.z., Liu, Y.m., Wang, Y.m., & Zhu, Z.x. (2017). Research and application of AGV technology in tobacco industry logistics system. In Transactions on computer science and engineering. Proceedings of the 2nd international conference on computer, network security and communication engineering (CNSCE 2017). DEStech Publications.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & Group, P., et al. (2009). Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLoS med 6(7):e1000097.
Mosca, E. (1995). Optimal, predictive, and adaptive control (Vol. 151). Prentice Hall.
Nguyen, H.H,. Kim, C.K., Bui, T.L., Kim, H.K., Lee, C.H., & Kim, S.B. (2018). Tracking controller design for omni-directional automated guided vehicles using backstepping and model reference adaptive control. In V. H. Duy, T. T. Dao, I. Zelinka, S. B. Kim, & T. T. Phuong (eds) Recent advances in electrical engineering and related sciences: Theory and application. Proceedings of the international conference on advanced engineering theory and applications (AETA 2017), Springer, Cham (Vol. 465, pp. 715–725).
Nti, I. K., Adekoya, A. F., Weyori, B. A., & Nyarko-Boateng, O. (2021). Applications of artificial intelligence in engineering and manufacturing: A systematic review. Journal of Intelligent Manufacturing, 1–21.
Nunes, V. A., & Barbosa, G. F. (2020). Simulation-based analysis of AGV workload used on aircraft manufacturing system: A theoretical approach. Acta Scientiarum Technology, 42, e47034–e47034.
Oleari, F., Magnani, M., Ronzoni, D., & Sabattini, L. (2014). Industrial AGVs: Toward a pervasive diffusion in modern factory warehouses. In Proceedings of the IEEE 10th international conference on intelligent computer communication and processing (ICCP 2014), IEEE, Cluj-Napoca, Romania (pp. 233–238).
Pei, Y., Zhang, K., Pan, J., & Shi, Y. (2017). Nonlinear model predictive tracking control of nonholonomic wheeled mobile robot using modified C/GMRES algorithm. In Proceedings of the IECON 2017—43rd annual conference of the ieee industrial electronics society, IEEE, Beijing, China (pp. 6298–6303).
Peng, S., & Shi, W. (2018). Adaptive fuzzy output feedback control of a nonholonomic wheeled mobile robot. IEEE Access, 6, 43414–43424.
Qi, J., & Wu, Y. (2020). Trajectory tracking control for double-steering automated guided vehicle based on model predictive control. In Journal of Physics: Conference Series. Proceedings of the 2019 2nd international symposium on power electronics and control engineering (ISPECE 2019), IOP Publishing, Tianjin, China (Vol. 1449, p. 012107).
Ren, C., Li, X., Yang, X., & Ma, S. (2019). Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation. IEEE Transactions on Industrial Electronics, 66(12), 9480–9489.
Rohmer, E., Singh, S. P., & Freese, M. (2013). V-REP: A versatile and scalable robot simulation framework. In Proceedings of the 2013 IEEE/RSJ international conference on intelligent robots and systems, IEEE, Tokyo, Japan (pp. 1321–1326).
Rossomando, F. G., & Soria, C. M. (2014). Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID. Neural Computing and Applications, 26(5), 1179–1191.
Rotondo, D., Puig, V., Nejjari, F., & Romera, J. (2015). A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Transactions on Industrial Electronics, 62(6), 3932–3944.
Roy, S., Nandy, S., Kar, I. N., Ray, R., & Shome, S. N. (2017). Robust control of nonholonomic wheeled mobile robot with past information: Theory and experiment. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 231(3), 178–188.
Sakir, R.K.A., Rusdinar, A., Yuwono, S., Wibowo, A.S., Jayanti, N.T., et al. (2017). Movement control algorithm of weighted automated guided vehicle using fuzzy inference system. In Proceedings of the 2nd international conference on control and robotics engineering (ICCRE 2017), IEEE, Bangkok, Thailand (pp. 135–139).
Sargent, R. (2000). Optimal control. Journal of Computational and Applied Mathematics, 124(1–2), 361–371.
Sen, C., Wenchao, X., Zhiyun, L., Huang, Y. (2019). On active disturbance rejection control for path following of automated guided vehicle with uncertain velocities. In Proceedings of the 2019 American control conference (ACC 2019), IEEE, Philadelphia, USA (pp. 2446–2451).
Septyan, M., & Agustinah, T. (2019). Trajectory tracking automated guided vehicle using fuzzy controller. In Proceedings of the 2019 international conference of artificial intelligence and information technology (ICAIIT), IEEE, Yogyakarta, Indonesia (pp. 169–174).
Setiawan, Y. D., Nguyen, T. H., Pratama, P. S., Kim, H. K., & Kim, S. B. (2016). Path tracking controller design of four wheel independent steering automatic guided vehicle. International Journal of Control, Automation and Systems, 14(6), 1550–1560.
Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots. MIT press.
Sun, Y. P., & Liang, Y. C. (2020). Vector field path-following control for a small unmanned ground vehicle with Kalman filter estimation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture.
Thi, K. D. H., Nguyen, M. C., Vo, H. T., Nguyen, D. D., & Bui, A. D. (2019). Trajectory tracking control for four-wheeled omnidirectional mobile robot using backstepping technique aggregated with sliding mode control. In Proceedings of the 2019 first international symposium on instrumentation, control, artificial intelligence, and robotics (ICA-SYMP), IEEE (pp. 131–134).
Tramonte, S., Sorbello, R., Guger, C., & Chella, A. (2019). Acceptability study of A3–K3 robotic architecture for a neurorobotics painting. Frontiers in Neurorobotics, 12, 81.
Tran, H.A.M., Ngo, H.Q.T., Nguyen, T.P., & Nguyen, H. (2018). Develop of AGV platform to support the arrangement of cargo in storehouse. In Proceedings of the 24th international conference on automation and computing (ICAC 2018), IEEE, Newcastle Upon Tyne, UK (pp. 1–5).
Tzafestas, S. G. (2014). Introduction to mobile robot control. Elsevier.
Ullrich, G. (2015). Automated guided vehicle systems: A primer with practical applications. Springer.
Ushikoshi, T. A., Peixoto, K. P., Souto, F. H., Thiago, P., & Schnitman, L. (2018). Fuzzy maneuvering controller applied to a dynamic model of a differential drive mobile robot. In Proceedings of the 2018 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, Rio de Janeiro, Brazil (pp. 1–8).
Vargas-Meléndez, L., Boada, B. L., Boada, M. J. L., Gauchía, A., & Díaz, V. (2016). A sensor fusion method based on an integrated neural network and Kalman filter for vehicle roll angle estimation. Sensors, 16(9)
Vp, S. S., Pottakulath, V., & Ajmal, M. (2015). Development of backstepping sliding mode tracking control for wheeled mobile robot. In Proceedings of the 2015 IEEE international conference on advanced communications, control and computing technologies, IEEE, Ramanathapuram, India (pp. 1013–1018).
Wang, C., Wang, L., Qin, J., Wu, Z., Duan, L., Cao, M., Li, Z., Lu, Z., Ling, Y., Li, M., et al. (2015). Development of a vision navigation system with fuzzy control algorithm for automated guided vehicle. In Proceedings of the 2015 IEEE international conference on information and automation, IEEE, Lijiang, China (pp. 2077–2082).
Wang, D., Wei, W., Yeboah, Y., Li, Y., & Gao, Y. (2020a). A robust model predictive control strategy for trajectory tracking of omni-directional mobile robots. Journal of Intelligent& Robotic Systems, 98(2), 439–453.
Wang, L., Han, T., & Zhang, L. (2018). Trajectory tracking for nonholonomic mobile robot using the sliding mode controller. In Proceedings of the 2018 IEEE international conference on information and automation (ICIA), IEEE, Wuyishan, China (pp. 461–464).
Wang, T., Dong, R., Zhang, R., & Qin, D. (2020b). Research on stability design of differential drive fork-type AGV based on PID control. Electronics, 9(7), 1072.
Weckx, S., Vandewal, B., Rademakers, E., Janssen, K., Geebelen, K., Wan, J., De Geest, R., Perik, H., Gillis, J., & Swevers, J., et al. (2020). Open experimental AGV platform for dynamic obstacle avoidance in narrow corridors. In Proceedings of the 2020 IEEE intelligent vehicles symposium (IV 2020), IEEE, Las Vegas, USA (pp. 844–851).
Wu, X., & Yang, Y. (2020). Path tracking controller design of automatic guided vehicle based on four-wheeled omnidirectional motion model. International Journal of Automotive and Mechanical Engineering, 17(2), 7996–8010.
Wu, X., Jin, P., Zou, T., Qi, Z., Xiao, H., & Lou, P. (2019). Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots. Journal of Intelligent& Robotic Systems, 96(1), 109–121.
Xu, B., & Wang, D. (2019). Magnetic locating AGV navigation based on Kalman filter and PID control. In Proceedings of the 2018 Chinese automation congress (CAC), IEEE, Xi’an, China (pp. 2509–2512).
Xu, H., Xia, J., Yuan, Z., & Cao, P. (2019). Design and implementation of differential drive AGV based on laser guidance. In Proceedings of the 3rd international conference on robotics and automation sciences (ICRAS 2019), IEEE, Wuhan, China (pp. 112–117).
Yan, Q. F., Hu, H. Y., Hang, T. P., & Fu, Y. S. (2019). Path tracking of INS AGV corrected by double magnetic nails based on fuzzy controller. In Proceedings of the 2019 IEEE 3rd advanced information management, communicates, electronic and automation control conference (IMCEC), IEEE, Chongqing, China (pp. 1732–1735).
Yang, C., Ma, H., & Fu, M. (2016). Robot kinematics and dynamics modeling. In C. Yang, H. Ma, & M. Fu (Eds.), Advanced technologies in modern robotic applications (pp. 27–48). Springer.
Ye, C., Chen, J., Chen, M., & Liu, L. (2015). A control approach of an omnidirectional mobile robot with differential wheels. In Proceedings of the 2015 IEEE international conference on mechatronics and automation (ICMA), IEEE, Beijing, China (pp. 1211–1216).
Ye, X., Wu, Z., & Zhao, F. (2014). Research on a 3 DOF automated guided vehicle based on the improved feedback linearization method. In Proceedings of the 33rd Chinese control conference, IEEE (pp. 184–188).
Yildiz, H., Can, N. K., Ozguney, O. C., & Yagiz, N. (2020). Sliding mode control of a line following robot. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11), 1–13.
Yin, P., Li, W., & Duan, Y. (2018). Combinatorial inertial guidance system for an automated guided vehicle. In Proceedings of the 2018 IEEE 15th international conference on networking, sensing and control (ICNSC), IEEE, Zhuhai, China (pp. 1–6).
Yin, X. H., Yang, C., & Xiong, D. (2014). Bio-inspired neurodynamics-based cascade tracking control for automated guided vehicles. The International Journal of Advanced Manufacturing Technology, 74(1–4), 519–530.
Yu, R., Zhao, H., Zhen, S., Huang, K., Chen, X., Sun, H., & Zhang, K. (2016). A novel trajectory tracking control of AGV based on Udwadia-Kalaba approach. IEEE/CAA Journal of Automatica Sinica.
Zangina, U., Buyamin, S., Abidin, M. S. Z., & Azimi, M. S. (2020). Non-linear PID controller for trajectory tracking of a differential drive mobile robot. Journal of Mechanical Engineering Research and Developments, 43(7), 255–270.
Zeng, W., Wang, Q., Liu, F., & Wang, Y. (2016). Learning from adaptive neural network output feedback control of a unicycle-type mobile robot. ISA Transactions, 61, 337–347.
Zhang, J., & Liu-Henke, X. (2020). Model-based design of the vehicle dynamics control for an omnidirectional automated guided vehicle (AGV). In Proceedings of the 2020 international conference mechatronic systems and materials (MSM), IEEE, Bialystok, Poland (pp. 1–6).
Zhang, X., Xie, Y., Jiang, L., Li, G., Meng, J., & Huang, Y. (2019). Fault-tolerant dynamic control of a four-wheel redundantly-actuated mobile robot. IEEE Access, 7, 157909–157921.
Zhong, M., Zhao, H., Yang, Y., & Zhang, J. (2018). Design of trajectory tracking controller for four wheel mobile robot based on Lyapunov direct method. In Proceedings of the 2018 international symposium in sensing and instrumentation in IoT Era (ISSI), IEEE, Shanghai, China (pp. 1–6).
Zhou, C., Huang, B., & Fränti, P. (2021). A review of motion planning algorithms for intelligent robotics. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01867-z
Zhou, X., Chen, T., & Zhang, Y. (2019a). Research on intelligent AGV control system. In Proceedings of the 2018 Chinese automation congress (CAC), IEEE (pp. 58–61).
Zhou, X., Zhang, Y., & Chen, T. (2019b). AGV controller based on improved particle swarm optimization. In Proceedings of the 2018 Chinese automation congress (CAC), IEEE (pp. 207–210).
Funding
This study was financed in part by the Coordenação de Aper- feiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. W. dos Reis was financed in part by the Federal Institute of Rio de Janeiro – IFRJ, campus Volta Redonda.
Author information
Authors and Affiliations
Contributions
Wallace dos Reis and Orides Morandin Junior contributed to the study conception and design. Material preparation, and data collection were performed by Wallace dos Reis. The first draft of the manuscript was written by Wallace dos Reis and Giselle Couto, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. W. dos Reis was financed in part by the Federal Institute of Rio de Janeiro – IFRJ, campus Volta Redonda.
Appendix A Summarizing Tables of the Systematic Literature Review
Appendix A Summarizing Tables of the Systematic Literature Review
Rights and permissions
About this article
Cite this article
Reis, W.P.N.d., Couto, G.E. & Junior, O.M. Automated guided vehicles position control: a systematic literature review. J Intell Manuf 34, 1483–1545 (2023). https://doi.org/10.1007/s10845-021-01893-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-021-01893-x