Abstract
In this paper, the complex control dynamics of a predator–prey Lotka–Volterra chaotic system are studied. The main purpose is to control the chaotic trajectories of two-predator one-prey system which was introduced by Samardzija and Greller (Bull Math Biol 50(5):465–491. https://doi.org/10.1007/BF02458847, 1988). Lyapunov based nonlinear control and sliding mode control methods are used. The other purpose of this paper is to present the sliding mode control performances under different sliding surface choices. Based on the sliding mode control and Lyapunov stability theory, four alternative sliding surfaces are constructed to stabilize the chaotic two-predator one-prey model to its zero equilibrium point. The focused control signals realize the control from only one state which provides simplicity in implementation. Numerical simulations are demonstrated to validate the theoretical analyses and compare the effectiveness of proposed controllers for the chaotic Samardzija–Greller system.
Similar content being viewed by others
References
Ablay, G. (2009). Sliding mode control of uncertain unified chaotic systems. Nonlinear Analysis: Hybrid Systems, 3(4), 531–535. https://doi.org/10.1016/j.nahs.2009.04.002.
Agrawal, S. K., Srivastava, M., & Das, S. (2012). Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems. Nonlinear Dynamics, 69(4), 2277–2288. https://doi.org/10.1007/s11071-012-0426-y.
Alrifai, M. T., & Zribi, M. (2018). Sliding mode control of chaos in a single machine connected to an infinite bus power system. Mathematical Problems in Engineering, 2018, 2703684. https://doi.org/10.1155/2018/2703684.
Arneodo, A., Coullet, P., & Tresser, C. (1980). Occurrence of strange attractors in three-dimensional Volterra equation. Physics Letters A, 79(4), 259–263. https://doi.org/10.1016/0375-9601(80)90342-4.
Bodale, I., & Oancea, V. A. (2015). Chaos control for Willamowski–Rossler model of chemical reactions. Chaos, Solitons & Fractals, 78, 1–9. https://doi.org/10.1016/j.chaos.2015.06.019.
Çağıl, G., Kocamaz, U. E., & Uyaroğlu, Y. (2017). Lyapunov based nonlinear control of the Lotka–Volterra system with four competitive species. In 5th International conference on advanced technology & sciences, ICAT’17, İstanbul, Turkey, May 09–12 (p. 138).
Chang, J. F., Hung, M. L., Yang, Y. S., Liao, T. L., & Yan, J. J. (2008). Controlling chaos of the family of Rössler systems using sliding mode control. Chaos, Solitons & Fractals, 37(2), 609–622. https://doi.org/10.1016/j.chaos.2006.09.051.
Chen, F. D., & Wang, H. N. (2016). Dynamic behaviors of a Lotka–Volterra competitive system with infinite delays and single feedback control. Journal of Nonlinear Functional Analysis, 2016, 43.
Cheng, C. H., Gao, F. J., Xu, J. S., Wang, Y. X., & Yuan, T. (2020). Adaptive control design for Arneodo chaotic system with uncertain parameters and input saturation. Advances in Mathematical Physics, 2020, 3285414. https://doi.org/10.1155/2020/3285414.
Donga, L. Z., & Takeuchi, Y. (2013). Impulsive control of multiple Lotka–Volterra systems. Nonlinear Analysis: Real World Applications, 14(2), 1144–1154. https://doi.org/10.1016/j.nonrwa.2012.09.006.
Elettreby, M. F. (2009). Two-prey one-predator model. Chaos, Solitons & Fractals, 39(5), 2018–2027. https://doi.org/10.1016/j.chaos.2007.06.058.
El-Gohary, A., & Al-Ruzaiza, A. S. (2002). Optimal control of the equilibrium state of prey-predator model. Nonlinear Dynamics Psychology and Life Sciences, 6, 27–36. https://doi.org/10.1023/A:1012253918774.
El-Gohary, A., & Al-Ruzaiza, A. S. (2007). Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos, Solitons & Fractals, 34(2), 443–453. https://doi.org/10.1016/j.chaos.2006.03.101.
El-Gohary, A., & Yassen, M. T. (2001). Optimal control and synchronization of Lotka–Volterra model. Chaos, Solitons & Fractals, 12(11), 2087–2093. https://doi.org/10.1016/S0960-0779(00)00023-0.
Fadali, M. S., & Jafarzadeh, S. (2011). Fuzzy TSK positive systems: Stability and control. In 2011 American control conference, San Francisco, California, USA, June 29–July 01 (pp. 4964–4969).
Göksu, A., Kocamaz, U. E., Uyaroğlu, Y., & Taşkın, H. (2015). Intelligent control of Lotka–Volterra chaotic system using state feedbacks and ANFIS. In 4th International fuzzy systems symposium, İstanbul, Turkey, November 5–6 (pp. 266–271).
Grognard, F., & Gouz, J. L. (2005). Positive control of Lotka-Volterra systems. In IFAC proceedings volumes, 16th IFAC World Congress, Prague, Czech Republic, July 3–8, 2005 (Vol. 38, No. 1, pp. 417–422). https://doi.org/10.3182/20050703-6-CZ-1902.00724.
Jang, M. J., Chen, C. L., & Chen, C. K. (2002). Sliding mode control of chaos in the cubic Chua’s circuit system. International Journal of Bifurcation and Chaos, 12(6), 1437–1449. https://doi.org/10.1142/S0218127402005248.
Jiang, G. R., & Lu, Q. S. (2007). Impulsive state feedback control of a predator-prey model. Journal of Computational and Applied Mathematics, 200(1), 193–207. https://doi.org/10.1016/j.cam.2005.12.013.
Khajanchi, S., Perc, M., & Ghosh, D. (2018). The influence of time delay in a chaotic cancer model. Chaos, 28(10), 103101. https://doi.org/10.1063/1.5052496.
Kızmaz, H., Kocamaz, U. E., & Uyaroğlu, Y. (2019). Control of memristor-based simplest chaotic circuit with one state controllers. Journal of Circuits Systems and Computers, 28(1), 1950007. https://doi.org/10.1142/S0218126619500075.
Kocamaz, U. E., Uyaroğlu, Y., & Kızmaz, H. (2014). Control of Rabinovich chaotic system using sliding mode control. International Journal of Adaptive Control and Signal Processing, 28(12), 1413–1421. https://doi.org/10.1002/acs.2450.
Korobeinikov, A., & Wake, G. C. (1999). Global properties of the three-dimensional predator-prey Lotka–Volterra systems. Journal of Applied Mathematics & Decision Sciences, 3(2), 155–162. https://doi.org/10.1155/S1173912699000085.
Li, D. J. (2016). Adaptive neural stabilization control for unified chaotic systems with full state constraints. Journal of Vibration and Control, 22(1), 121–128. https://doi.org/10.1177/1077546314526922.
Li, Y. F., Xie, D. L., & Cui, J. A. (2014). Complex dynamics of a predator-prey model with impulsive state feedback control. Applied Mathematics and Computation, 230, 395–405. https://doi.org/10.1016/j.amc.2013.12.107.
Li, N., Zhang, Q., & Sun, H. (2010). Scalar feedback control in a chaotic prey-predator system. In International workshop on chaos-fractal theory and its applications, IEEE, Kunming, Yunnan, China, October 29–31 (pp. 77–81). https://doi.org/10.1109/IWCFTA.2010.92.
Lin, S. Y., & Zhang, W. D. (2018). Chattering reduced sliding mode control for a class of chaotic systems. Nonlinear Dynamics, 93(4), 2273–2282. https://doi.org/10.1007/s11071-018-4324-9.
Liu, Y. D., & Liu, W. J. (2018). Chaotic behavior analysis and control of a toxin producing phytoplankton and zooplankton system based on linear feedback. Filomat, 32(11), 3779–3789. https://doi.org/10.2298/FIL1811779L.
Liu, X., & Rohlf, K. (1998). Impulsive control of a Lotka–Volterra system. IMA Journal of Mathematical Control and Information, 15(3), 269–284. https://doi.org/10.1093/imamci/15.3.269.
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020%3c0130:DNF%3e2.0.CO;2.
Lotka, A. J. (1925). Elements of physical biology. Nature, 116, 461. https://doi.org/10.1038/116461b0.
Luo, S. H., Li, S. B., & Tajaddodianfar, F. (2018). Chaos and nonlinear feedback control of the arch micro-electro-mechanical system. Journal of Systems Science and Complexity, 31(6), 1510–1524. https://doi.org/10.1007/s11424-018-7234-5.
Mahdian, M., Zamani, I., & Zarif, M. H. (2014). PDC-based fuzzy impulsive control design with application to biological systems: Predator-prey system. In 14th Iranian conference on fuzzy systems, Tabriz, Iran, August 19–21 (pp. 1–8).
Mahmoud, G. M., Arafa, A. A., Abed-Elhameed, T. M., & Mahmoud, E. E. (2017). Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control. Chaos, Solitons & Fractals, 104, 680–692. https://doi.org/10.1016/j.chaos.2017.09.023.
Meza, M. E. M., Bhaya, A., & Kaszkurewicz, E. (2005). Controller design techniques for the Lotka–Volterra nonlinear system. Revista Controle & Automação, 16(2), 124–135. https://doi.org/10.1590/S0103-17592005000200002.
Mokhtari, H., & Noroozi, A. (2018). An efficient chaotic based PSO for earliness/tardiness optimization in a batch processing flow shop scheduling problem. Journal of Intelligent Manufacturing, 29(5), 1063–1081. https://doi.org/10.1007/s10845-015-1158-x.
Njah, A. N., Ojo, K. S., Adebayo, G. A., & Obawole, A. O. (2010). Generalized control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Physica C-Superconductivity and Its Applications, 470(13–14), 558–564. https://doi.org/10.1016/j.physc.2010.05.009.
Olabode, D. L., Miwadinou, C. H., Monwanou, A. V., & Orou, J. B. C. (2018). Horseshoes chaos and its passive control in dissipative nonlinear chemical dynamics. Physica Scripta, 93(8), 085203. https://doi.org/10.1088/1402-4896/aacef0.
Ott, E., Grebogi, C., & Yorke, J. A. (1990). Controlling chaos. Physical Review Letters, 64(11), 1196–1199. https://doi.org/10.1103/PhysRevLett.64.1196.
Pavel, L., & Chang, L. (2012). Lyapunov-based boundary control for a class of hyperbolic Lotka–Volterra systems. IEEE Transactions on Automatic Control, 57(3), 701–714. https://doi.org/10.1109/TAC.2011.2168909.
Pei, Y. Z., Liu, S. Y., & Li, C. G. (2009). Complex dynamics of an impulsive control system in which predator species share a common prey. Journal of Nonlinear Science, 19(3), 249–266. https://doi.org/10.1007/s00332-008-9034-x.
Rao, R. F., & Zhong, S. M. (2020). Impulsive control on delayed feedback chaotic financial system with Markovian jumping. Advances in Difference Equations, 2020(1), 50. https://doi.org/10.1186/s13662-020-2524-3.
Samardzija, N., & Greller, L. D. (1988). Explosive route to chaos through a fractal torus in a generalized Lotka–Volterra model. Bulletin of Mathematical Biology, 50(5), 465–491. https://doi.org/10.1007/BF02458847.
Vaidyanathan, S. (2011). Adaptive control and synchronization of a generalized Lotka–Volterra system. International Journal on Bioinformatics & Biosciences, 1(1), 1–12.
Vano, J. A., Wildenberg, J. C., Anderson, M. B., Noel, J. K., & Sprott, J. C. (2006). Chaos in low-dimensional Lotka–Volterra models of competition. Nonlinearity, 19(10), 2391–2404. https://doi.org/10.1088/0951-7715/19/10/006.
Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558–560. https://doi.org/10.1038/118558a0.
Wang, Y. A. (2012). Stability analysis of predator-prey system with fuzzy impulsive control. Journal of Applied Mathematics, 2012, 715497. https://doi.org/10.1155/2012/715497.
Wang, B., & Chen, L. L. (2019). New results on the control for a kind of uncertain chaotic systems based on fuzzy logic. Complexity, 2019, 8789438. https://doi.org/10.1155/2019/8789438.
Wei, Z. C., Moroz, I., Sprott, J. C., Wang, Z., & Zhang, W. (2017). Detecting hidden chaotic regions and complex dynamics in the self-exciting homopolar disc dynamo. International Journal of Bifurcation and Chaos, 27(2), 1730008. https://doi.org/10.1142/S0218127417300087.
Xia, M., Li, Y., & Cai, Y. (2012). Type-2 fuzzy adaptive control method of ecological system. International Journal of Nonlinear Science, 14(1), 100–106.
Yau, H. T., & Yan, J. J. (2004). Design of sliding mode controller for Lorenz chaotic system with nonlinear input. Chaos, Solitons & Fractals, 19(4), 891–898. https://doi.org/10.1016/S0960-0779(03)00255-8.
Yi, J., Li, X. Y., Chu, C. H., & Gao, L. (2019). Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization. Journal of Intelligent Manufacturing, 30(1), 405–428. https://doi.org/10.1007/s10845-016-1255-5.
Zhang, X. D., Liu, X. D., Zheng, Y., & Liu, C. (2013). Chaotic dynamic behavior analysis and control for a financial risk system. Chinese Physics B, 22(3), 030509. https://doi.org/10.1088/1674-1056/22/3/030509.
Zhao, H. T., Sun, Y. W., & Wang, Z. (2014). Control of Hopf bifurcation and chaos in a delayed Lotka–Volterra predator-prey system with time-delayed feedbacks. Abstract and Applied Analysis, 2014, 104156. https://doi.org/10.1155/2014/104156.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kocamaz, U.E., Göksu, A., Taşkın, H. et al. Control of chaotic two-predator one-prey model with single state control signals. J Intell Manuf 32, 1563–1572 (2021). https://doi.org/10.1007/s10845-020-01676-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10845-020-01676-w