[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimization of a supply portfolio in the context of supply chain risk management: literature review

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The aim of this paper is to review the literature in the field of supplier selection under supply chain risk management. Collected papers from 2003 to 2014 are analyzed and classified, first, according to the characteristics of the problem they deal with, secondly, according to the approach they propose, and thirdly, according to the techniques they use. The papers have been grouped into five categories: the first group relates to quantitative approaches to supplier selection, the second concerns qualitative approaches, the third consists of hybrid approaches that blend two or more different approaches together, the fourth relates to simulation approaches and the last group to artificial intelligence. The techniques used in each category are outlined. The different approaches and their associated techniques are analyzed and some recommendations are made on improving their efficiency and performance. This paper is thus a systematic scope review of journal articles and conference papers issued during this period. It brings together a collection of 124 papers on the topic of supplier selection under supply chain risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahiska, S. S., Appaji, S. R., King, R. E., & Warsing, D. P, Jr. (2013). A Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing. International Journal of Production Economics, 144, 485–496.

    Article  Google Scholar 

  • Alinezad, A., Seif, A., & Esfandiari, N. (2013). Supplier evaluation and selection with QFD and FAHP in a pharmaceutical company. International Journal Advanced Manufacturing Technology, 68, 355–364. doi:10.1007/s00170-013-4733-3.

    Article  Google Scholar 

  • Arcelus, F. J., Kumar, S., & Srinivasan, G. (2012). Risk tolerance and a retailer’s pricing and ordering policies within a newsvendor framework. Omega, 40, 188–198.

    Article  Google Scholar 

  • Arkan, A., Hejazi, S. R., & Golmah, V. (2011). Supplier selection in supply chain management with disruption risk and credit period concepts. Journal of Industrial Engineering International, 7(15), 51–59.

    Google Scholar 

  • Awasthi, A., Chauhan, S. S., Goyal, S. K., & Proth, J. M. (2009). Supplier selection problem for a single manufacturing unit under stochastic demand. International Journal of Production Economics, 117, 229–233.

    Article  Google Scholar 

  • Azadeh, A., & Alem, S. A. (2010). A flexible deterministic, stochastic and fuzzy data envelopment analysis approach for supply chain risk and vendor selection problem: Simulation analysis. Expert Systems with Applications, 37, 7438–7448.

    Article  Google Scholar 

  • Azaron, A., Brown, K. N., Tarim, S. A., & Modarres, M. (2008). A multi-objective stochastic programming approach for supply chain design considering risk. International Journal of Production Economics, 116, 129–138.

    Article  Google Scholar 

  • Baghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227, 199–215.

    Article  Google Scholar 

  • Berger, P. D., Gerstenfeld, A., & Zeng, A. Z. (2004). How many suppliers are best? A decision-analysis approach. Omega, 32, 9–15.

    Article  Google Scholar 

  • Berger, P. D., & Zeng, A. Z. (2006). Single versus multiple sourcing in the presence of risks. Journal of the Operational Research Society, 57, 250–261.

    Article  Google Scholar 

  • Bhattacharya, A., Geraghty, J., & Young, P. (2010). Supplier selection paradigm: An integrated hierarchical QFD methodology under multiple-criteria environment. Applied Soft Computing, 10, 1013–1027.

    Article  Google Scholar 

  • Bilsel, R. U., & Ravindran, A. (2011). A multiobjective chance constrained programming model for supplier selection under uncertainty. Transportation Research Part B, 45, 1284–1300.

    Article  Google Scholar 

  • Burke, G. J. (2009). Sourcing decisions, with stochastic supplier reliability and stochastic demand. Production and Operations Management, 18(4), 475–484.

    Article  Google Scholar 

  • Burke, G. J., Carrillo, J., & Vakharia, A. J. (2008). Heuristics for sourcing from multiple suppliers with alternative quantity discounts. European Journal of Operational Research, 186, 317–329.

    Article  Google Scholar 

  • Burke, G. J., Erenguc, S. S., & Vakharia, A. J. (2008). Optimal requirement allocation among quantity-discount quoting suppliers. Operations Management Research, 1, 53–60.

    Article  Google Scholar 

  • Carrera, D. A., & Mayorga, R. V. (2008). Supply chain management: A modular Fuzzy Inference System approach in supplier selection for new product development. Journal of Intelligent Manufacturing, 19, 1–12.

    Article  Google Scholar 

  • Chai, J., James, N. K. L., & Eric, W. T. N. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40, 3872–3885.

    Article  Google Scholar 

  • Chamodrakas, I., Batis, D., & Martakos, D. (2010). Supplier selection in electronic marketplaces using satisficing and fuzzy AHP. Expert Systems with Applications, 37, 490–498.

    Article  Google Scholar 

  • Chan, F. T. S., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35, 417–431.

    Article  Google Scholar 

  • Chen, J., Zhao, X., & Zhou, Y. (2012). A periodic-review inventory system with a capacitated backup supplier for mitigating supply disruptions. European Journal of Operational Research, 219, 312–323.

    Article  Google Scholar 

  • Chen, K., & Zhuang, P. (2011). Disruption management for a dominant retailer with constant demand-stimulating service cost. Computers & Industrial Engineering, 61, 936–946.

    Article  Google Scholar 

  • Chen, Y.S., Cheng, C.H., & Lai, C.J. (2012). Extracting performance rules of suppliers in the manufacturing industry: An empirical study, Journal of Intelligent Manufacturing, 2037–2045. doi:10.1007/s10845-011-0530-8

  • Cheng, L., Wan, Z., & Wang, G. (2009). Bilevel newsvendor models considering retailer with CVaR objective. Computers & Industrial Engineering, 57, 310–318.

    Article  Google Scholar 

  • Chiu, M. C., & Okudan, G. (2014). An investigation on the impact of product modularity level on supply chain performance metrics: an industrial case study. Journal of Intelligent Manufacturing, 25, 129–145.

    Article  Google Scholar 

  • Choi, T.-M., Li, D., & Yan, H. (2008). Mean-variance analysis of a single supplier and retailer supply chain under a returns policy. European Journal of Operational Research, 184, 356–376.

    Article  Google Scholar 

  • Choudhary, D., & Shankar, R. (2013). Joint decision of procurement lot-size, supplier selection, and carrier selection. Journal of Purchasing & Supply Management, 19, 16–26.

    Article  Google Scholar 

  • Choudhary, D., & Shankar, R. (2014). A goal programming model for joint decision making of inventory lot-size, supplier selection and carrier selection. Computers & Industrial Engineering, 71, 1–9.

    Article  Google Scholar 

  • Davarzani, H., Zegordi, S. H., & Norrman, A. (2011). Contingent management of supply chain disruption: Effects of dual or triple sourcing. Scientia Iranica E, 18(6), 1517–1528.

    Article  Google Scholar 

  • Demirtas, E. A., & Ustun, O. (2006). An integrated multi-objective decision making process for supplier selection and order allocation. Omega-International Journal of Management Science, 36(1), 79–90

  • Demirtas, E. A., & Ustun, O. (2009). Analytic network process and multi-period goal programming integration in purchasing decisions. Computers & Industrial Engineering, 56, 677–690.

    Article  Google Scholar 

  • Dickson, G. W. (1966). An analysis of vendor selection systems and decisions. Journal of Purchasing, 2(1), 5–17.

    Article  Google Scholar 

  • Duan, Q., & Liao, T. W. (2013). Optimization of replenishment policies for decentralized and centralized capacitated supply chains under various demands. International Journal of Production Economics, 142, 194–204.

    Article  Google Scholar 

  • Eng, S.W.L., Chew, E.P., & Lee, L.H. (2013). Impacts of supplier knowledge sharing competences and production capacities on radical innovative product sourcing. European Journal of Operational Research. doi:10.1016/j.ejor.2013.06.031.

  • Federgruen, A., & Yang, N. (2008). Selecting a portfolio of suppliers under demand and supply risks. Operations Research, 56(4), 916–936.

    Article  Google Scholar 

  • Finke, G.R., Schmitt, A.J., Singh, M. (2010). Modeling and simulating supply chain schedule risk. In: Proceedings of the Winter Simulation Conference.

  • Gan, X., Sethi, S. P., & Yan, H. (2005). Channel coordination with a risk-neutral supplier and a downside-risk-averse retailer. Production and Operations Management, 14, 80–89.

    Article  Google Scholar 

  • Giri, B. C. (2011). Managing inventory with two suppliers under yield uncertainty and risk aversion. International Journal of Production Economics, 133, 80–85.

    Article  Google Scholar 

  • Guo, C., & Li, X. (2014). A multi-echelon inventory system with supplier selection and order allocation under stochastic demand. International Journal of Production Economics, 151, 37–47.

    Article  Google Scholar 

  • Hammami, R., Frein, Y., & Hadj-Alouane, A. B. (2012). An international supplier selection model with inventory and transportation management decisions. journal of Flexible Service Manufacturing, 24, 4–27.

    Article  Google Scholar 

  • Hammami, R., Temponi, C., & Frein, Y. (2014). A scenario-based stochastic model for supplier selection in global context with multiple buyers, currency fluctuation uncertainties, and price discounts. European Journal of Operational Research, 233, 159–170.

    Article  Google Scholar 

  • He, Y., & Zhao, X. (2012). Coordination in multi-echelon supply chain under supply and demand uncertainty. International Journal of Production Economics, 139, 106–115.

    Article  Google Scholar 

  • Hou, J., Zeng, A. Z., & Zhao, L. (2010). Coordination with a backup supplier through buy-back contract under supply disruption. Transportation Research Part E, 46, 881–895.

    Article  Google Scholar 

  • Hsieh, C. C., Chang, Y. L., & Wu, C. H. (2014). Competitive pricing and ordering decisions in a multiple-channel supply chain. International Journal of Production Economics, 154, 156–165.

    Article  Google Scholar 

  • Hsieh, C.-C. H., & Lu, Y.-T. (2010). Manufacturer’s return policy in a two-stage supply chain with two risk-averse retailers and random demand. European Journal of Operational Research, 207, 514–523.

    Article  Google Scholar 

  • Jain, R., Singh, A. R., Yadav, H. C., & Mishra, P. K. (2014). Using data mining synergies for evaluating criteriaat pre-qualification stage of supplier selection. Journal of Intelligent Manufacturing, 25, 165–175. doi:10.1007/s10845-012-0684-z.

    Article  Google Scholar 

  • Juttner, U., Peck, H., & Christopher, M. (2003). Supply chain risk management: Outlining an agenda for future research. International Journal of Logistics Research Application, 6(4), 197–210.

    Article  Google Scholar 

  • Kang, H. Y., Lee, A. H. I., & Yang, C. Y. (2012). A fuzzy ANP model for supplier selection as applied to IC packaging. Journal of Intelligent Manufacturing, 23, 1477–1488.

    Article  Google Scholar 

  • Kar, A.K., (2010). Risk in supply chain management. http://business-fundas.com/2010/riskin-supply-chain-management/

  • Klimov, R.A., Merkuryev, Y.A. (2006). Simulation-based risk measurement in supply chains, In: Proceeding of 20th European conference in modeling and simulation.

  • Kokangul, A., & Susuz, Z. (2009). Integrated analytical hierarch process and mathematical programming to supplier selection problem with quantity discount. Applied Mathematical Modelling, 33(3), 1417–1429.

    Article  Google Scholar 

  • Kubat, C., & Yuce, B. (2012). A hybrid intelligent approach for supply chain management system. Journal of Intelligent Manufacturing, 23, 1237–1244. doi:10.1007/s10845-010-0431-2.

    Article  Google Scholar 

  • Kull, T., & Closs, D. (2008). The risk of second-tier supplier failures in serial supply chains: Implications for order policies and distributor autonomy. European Journal of Operational Research, 186, 1158–1174.

    Article  Google Scholar 

  • Kull, T. J., & Talluri, S. (2008). A supply risk reduction model using integrated multicriteria decision making. IEEE Transactions on Engineering Management, 55(3), 409.

    Article  Google Scholar 

  • Le, H. Q., Arch-int, S., Nguyen, H. X., & Arch-int, N. (2013). Association rule hiding in risk management for retail supply chain collaboration. Computer Industry, 2013. doi:10.1016/j.compind.04.011

  • Lee, A. H. L. (2009). A fuzzy supplier selection model with the consideration of benefits, opportunities, costs and risks. Expert Systems with Applications, 36, 2879–2893.

    Article  Google Scholar 

  • Li, J., Wang, S., & Cheng, T. C. E. (2010). Competition and cooperation in a single-retailer two-supplier supply chain with supply disruption. International Journal of Production Economics, 124, 137–150.

    Article  Google Scholar 

  • Li, L., & Zabinsky, Z. B. (2011). Incorporating uncertainty into a supplier selection problem. International Journal of Production Economics, 134, 344–356.

    Article  Google Scholar 

  • Li, B., Chen, P., Li, Q., Wang, W. (2014). Dual-channel supply chain pricing decisions with a risk averse retailer. doi:10.1080/00207543.2014.939235

  • Li, S., & Zeng, W. (2014). Risk analysis for the supplier selection problem using failure modes and effects analysis (FMEA). Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0953-0

  • Ma, L., Liu, F., Li, S., & Yan, H. (2012). Channel bargaining with risk-averse retailer. International Journal of Production Economics, 139, 155–167.

    Article  Google Scholar 

  • Ma, L., Zhao, Y., Xue, W., Cheng, T. C. E., & Yan, H. (2012). Loss-averse newsvendor model with two ordering opportunities and market information updating. International Journal of Production Economics, 140, 912–921.

    Article  Google Scholar 

  • Manerba, D., & Mansini, R. (2014). An effective matheuristic for the capacitated total quantity discount problem. Computers & Operations Research, 41, 1–11.

    Article  Google Scholar 

  • Mansini, R., Savelsbergh, M. W. P., & Tocchella, B. (2012). The supplier selection problem with quantity discounts and truckload shipping. Omega, 40, 445–455.

    Article  Google Scholar 

  • Meena, P. L., & Sarmah, S. P. (2013). Multiple sourcing under supplier failure risk and quantity discount: A genetic algorithm approach. Transportation Research Part E, 50, 84–97.

    Article  Google Scholar 

  • Meena, P. L., Sarmah, S. P., & Sarkar, A. (2011). Sourcing decisions under risks of catastrophic event disruptions. Transportation Research Part E, 47, 1058–1074.

    Article  Google Scholar 

  • Mirahmadi, N., Saberi, E., & Teimoury, E. (2012). Determination of the optimal number of suppliers considering the risk: Emersun Company as a case study. Advanced Materials Research, 433–440, 5873–5880.

    Article  Google Scholar 

  • Nejad, A. E., Niroomand, I., & Kuzgunkaya, O. (2014). Responsive contingency planning in supply risk management by considering congestion effects. Omega, 48, 19–35.

    Article  Google Scholar 

  • Pal, B., Sana, S. S., & Kripasindhu, K. (2012). A multi-echelon supply chain model for reworkable items in multiple-markets with supply disruption? Economic Modelling, 29, 1891–1898.

    Article  Google Scholar 

  • Pang, B., & Bai, S. (2013). An integrated fuzzy synthetic evaluation approach for supplier selection based on analytic network process. Journal of Intelligent Manufacturing, 24, 163–174. doi:10.1007/s10845-011-0551-3.

    Article  Google Scholar 

  • Peidro, D., Mula, J., Jiménez, M., & Botella, M. D. M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205, 65–80.

    Article  Google Scholar 

  • Pinto, R., Mettler, T., & Taisch, M. (2013). Managing supplier delivery reliability risk under limited information: Foundations for a human-in-the-loop DSS. Decision Support Systems, 54, 1076–1084.

    Article  Google Scholar 

  • Qi, L. (2013). A continuous-review inventory model with random disruptions at the primary supplier. European Journal of Operational Research, 225, 59–74.

    Article  Google Scholar 

  • Ravindran, A. V., Bilsel, R. U., Wadhwa, V. V., & Yang, T. (2010). Risk adjusted multicriteria supplier selection models with applications. International Journal of Production Research, 48(2), 405–424.

    Article  Google Scholar 

  • Ray, P., & Jenamani, M. (2014). Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach. Annal Operation Research. doi:10.1007/s10479-014-1649-8.

  • Ruiz-Torres, A. J., & Mahmoodi, F. (2007). The optimal number of suppliers considering the costs of individual supplier failures. Omega, 35, 104–115.

    Article  Google Scholar 

  • Ruiz-Torres, A. J., & Mahmoodi, F. (2006). A supplier allocation model considering delivery failure, maintenance and supplier cycle costs. International Journal of Production Economics, 103, 755–766.

    Article  Google Scholar 

  • Ruiz-Torres, A. J., Mahmoodi, F., & Zeng, A. Z. (2013). Supplier selection model with contingency planning for supplier failures. Computers & Industrial Engineering, 66, 374–382.

    Article  Google Scholar 

  • Sanayei, A., Mousavi, S. F., & Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37, 24–30.

    Article  Google Scholar 

  • Sarkar, A., & Mohapatra, P. K. J. (2009). Determining the optimal size of supply base with the consideration of risks of supply disruptions. International Journal of Production Economics, 119, 122–135.

    Article  Google Scholar 

  • Sawik, T. (2011a). Selection of supply portfolio under disruption risks. Omega, 39, 194–208.

    Article  Google Scholar 

  • Sawik, T. (2013a). Selection of resilient supply portfolio under disruption risks. Omega, 41, 259–269.

    Article  Google Scholar 

  • Sawik, T. (2014). Optimization of cost and service level in the presence of supply chain disruption risks: Single vs. multiple sourcing. Computers & Operations Research, 51, 11–20.

    Article  Google Scholar 

  • Sawik, T. (2014). Joint supplier selection and scheduling of customer orders under disruption risks: Single vs. dual sourcing. Omega, 43, 83–95.

    Article  Google Scholar 

  • Sawik, T. (2010). Single vs. multiple objective supplier selection in a make to order environment. Omega, 38, 203–212.

    Article  Google Scholar 

  • Sawik, T. (2011b). Supplier selection in make-to-order environment with risks. Mathematical and Computer Modelling, 53, 1670–1679.

    Article  Google Scholar 

  • Sawik, T. (2013b). Integrated selection of suppliers and scheduling of customer orders in the presence of supply chain disruption risks. International Journal of Production Research, 51, 23–24.

    Article  Google Scholar 

  • Sayın, F., Karaesmen, F., & Özekici, S. (2014). Newsvendor model with random supply and financial hedging: Utility-based approach. International Journal of Production Economics, 154, 178–189.

    Article  Google Scholar 

  • Schmitt, A. J. (2011). Strategies for customer service level protection under multi-echelon supply chain disruption risk. Transportation Research Part B, 45, 1266–1283.

    Article  Google Scholar 

  • Schmitt, A.J., & Singh M. (2009) Quantifying supply chain disruption risk using Monte Carlo and discrete-event simulation, In: Proceedings of the winter simulation conference.

  • Schmitt, A. J., & Singh, M. (2012). A quantitative analysis of disruption risk in a multi-echelon supply chain. International Journal of Production Economics, 139, 22–32.

    Article  Google Scholar 

  • Schmitt, A. J., & Snyder, L. V. (2012). Infinite-horizon models for inventory control under yield uncertainty and disruptions. Computers & Operations Research, 39, 850–862.

    Article  Google Scholar 

  • Schmitt, A. J., Snyder, L. V., & Shen, Z.-J. M. (2010). Inventory systems with stochastic demand and supply: Properties and approximations. European Journal of Operational Research, 206, 313–328.

    Article  Google Scholar 

  • Şen, A., Yaman, H., Güler, K., & Körpeoğlu, E. (2014). Multi-period supplier selection under price uncertainty. Journal of the Operational Research Society, 65, 1636–1648.

    Article  Google Scholar 

  • Serel, D. A. (2007). Capacity reservation under supply uncertainty. Computers & Operations Research, 34, 1192–1220.

    Article  Google Scholar 

  • Serel, D. A. (2008). Inventory and pricing decisions in a single-period problem involving risky supply. International Journal of Production Economics, 116, 115–128.

    Article  Google Scholar 

  • Sharma, S., & Balan, S. (2013). An integrative supplier selection model using Taguchi loss function. TOPSIS and multi criteria goal programming. Journal of Intelligent Manufacturing, 24, 1123–1130. doi:10.1007/s10845-012-0640-y.

    Article  Google Scholar 

  • Shina, H., Benton, W. C., & Jun, M. (2009). Quantifying suppliers’ product quality and delivery performance: A sourcing policy decision model. Computers & Operations Research, 36, 2462–2471.

    Article  Google Scholar 

  • Silbermayr, L., & Minner, S. (2014). A multiple sourcing inventory model under disruption risk. International Journal of Production Economics. doi:10.1016/j.ijpe.2013.03.025

  • Song, D.-P., Dong, J.-X., & Xu, J. (2014). Integrated inventory management and supplier base reduction in a supply chain with multiple uncertainties. European Journal of Operational Research, 232, 522–536.

    Article  Google Scholar 

  • Sun, G., Liu, Y., & Lan, Y. (2011). Fuzzy two-stage material procurement planning problem. Journal of Intelligent Manufacturing, 22, 319–331. doi:10.1007/s10845-009-0306-6.

    Article  Google Scholar 

  • Tabrizi, B. H., & Razmi, J. (2013). Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. Journal of Manufacturing Systems, 32, 295–307.

    Article  Google Scholar 

  • Tai-Yue Wang, T. Y., & Yang, Y. H. (2009). A fuzzy model for supplier selection in quantity discount environments. Expert Systems with Applications, 36, 12179–12187.

    Article  Google Scholar 

  • Talluri, S., Narasimhan, R., & Chung, W. (2010). Manufacturer cooperation in supplier development under risk. European Journal of Operational Research, 207, 165–173.

    Article  Google Scholar 

  • Tapiero, C. S., & Kogan, K. (2007). Risk and quality control in a supply chain: Competitive and collaborative approaches. Journal of the Operational Research Society, 58, 1440–1448.

    Article  Google Scholar 

  • Taskin, S., & Lodree, E. L, Jr. (2010). Inventory decisions for emergency supplies based on hurricane count predictions. International Journal of Production Economics, 126, 66–75.

    Article  Google Scholar 

  • Tehrani, M. B., Xu, S. H., Kumara, S., & Li, H. (2011). A single-period analysis of a two-echelon inventory system with dependent supply uncertainty. Transportation Research Part B, 45, 1128–1151.

    Article  Google Scholar 

  • Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing supply chain disruption risks. Management Science, 52(5), 639–657.

    Article  Google Scholar 

  • Tse, Y. K., & Tan, K. H. (2012). Managing product quality risk and visibility in multi-layer supply chain. International Journal of Production Economics, 139, 49–57.

    Article  Google Scholar 

  • Ustun, O., & Demirtas, E. A. (2008). An integrated multi-objective decision-making process formulti-period lot-sizing with supplier selection. Omega, 36, 509–521.

    Article  Google Scholar 

  • Vinodh, S., Ramiya, R. A., & Gautham, S. G. (2011). Application of fuzzy analytic network process for supplier selection in a manufacturing organization. Expert Systems with Applications, 38, 272–280.

    Article  Google Scholar 

  • Viswanadham, N., & Gaonkar, R. A. (2003). Conceptual and analytical framework for the management of risk in supply chains. In: Proceedings of IT-MLS December 15–16.

  • Wang, Q. (2013). A periodic-review inventory control policy for a two-level supply chain with multiple retailers and stochastic demand. European Journal of Operational Research, 230, 53–62.

    Article  Google Scholar 

  • Waters, D. (2007). Global logistics new directions in supply chain management. London and Philadelphia: Kogan Page.

    Google Scholar 

  • Weber, C. A., Current, Jr, & Benton, W. C. (1991). Vendor selection criteria and methods. European Jurnal of Operational Research, 50, 2–18.

    Article  Google Scholar 

  • Wu, D., & Olson, D. L. (2008). Supply chain risk, simulation, and vendor selection. International Journal of Production Economics, 114, 646–655.

    Article  Google Scholar 

  • Wu, D., Wu, D. D. W., Zhang, Y., & Olson, D. L. (2013). Supply chain outsourcing risk using an integrated stochastic-fuzzy optimization approach. Information Sciences, 235, 242–258.

    Article  Google Scholar 

  • Wu, D. D., Zhang, Y., Wu, D., & Olson, D. L. (2010). Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach. European Journal of Operational Research, 200, 774–787.

    Article  Google Scholar 

  • Wu, T., Blackhurst, J., & Chidambaram, V. (2006). A model for inbound supply risk analysis. Computers in Industry, 57, 350–365.

    Article  Google Scholar 

  • Xanthopoulos, A., Vlachos, D., & Iakovou, E. (2012). Optimal newsvendor policies for dual-sourcing supply chains: A disruption risk management framework. Computers & Operations Research, 39, 350–357.

    Article  Google Scholar 

  • Xiang, W., Song, F., & Ye, F. (2014). Order allocation for multiple supply demand networks within a cluster. Journal of Intelligent Manufacturing, 25, 1367–1376. doi:10.1007/s10845-013-0735-0.

    Article  Google Scholar 

  • Xiao, T., Jin, J., Chen, G., Shi, J., & Xie, M. (2010). Ordering, wholesale pricing and lead-time decisions in a three-stage supply chain under demand uncertainty. Computers & Industrial Engineering, 59, 840–852.

    Article  Google Scholar 

  • Xiao, T., & Yang, D. (2008). Price and service competition of supply chains with risk-averse retailers under demand uncertainty. International Journal of Production Economics, 114, 187–200.

    Article  Google Scholar 

  • Xiao, Z., Chen, W., & Li, L. (2012). An integrated FCM and fuzzy soft set for supplier selection problem based on risk evaluation. Applied Mathematical Modelling, 36, 1444–1454.

    Article  Google Scholar 

  • Yang, S., Yang, J., & Abdel-Malek, L. (2007). Sourcing with random yields and stochastic demand: A newsvendor approach. Computers & Operations Research, 34, 3682–3690.

    Article  Google Scholar 

  • Yan, & Nishi, (2014). A supply chain planning model with supplier selection under uncertain demands and asymmetric information. Procedia CIRP, 17, 639–644.

    Article  Google Scholar 

  • Yu, H., Zeng, A. Z., & Zhao, L. (2009). Single or dual sourcing: Decision-making in the presence of supply chain disruption risks. Omega, 37, 788–800.

    Article  Google Scholar 

  • Zegordi, S. H., & Davarzani, H. (2012). Developing a supply chain disruption analysis model: Application of colored Petri-nets. Expert Systems with Applications, 39, 2102–2111.

    Article  Google Scholar 

  • Zhang, J. L., & Zhang, M. Y. (2011). Supplier selection and purchase problem with fixed cost and constrained order quantities under stochastic demand. International Journal of Production Economics, 129, 1–7.

    Article  Google Scholar 

  • Zhang, J.-L., & Chen, J. (2013). Supplier selection and procurement decisions with uncertain demand, fixed selection costs and quantity discounts. Computers & Operations Research, 40, 2703–2710.

    Article  Google Scholar 

  • Zhang, D. Y., Cao, X., Wang, L., & Zeng, Z. (2012). Mitigating the risk of information leakage in a two-level supply chain through optimal supplier selection. Journal Intelligent Manufacturing, 23, 1351–1364.

    Article  Google Scholar 

  • Zhu, J., & Fu, S. (2013). Ordering policies for a dual sourcing supply chain with disruption risks. Journal of Industrial Engineering and Management, 6(1), 380–399.

    Article  Google Scholar 

  • Zouggari, A., & Benyoucef, L. (2012). Simulation based fuzzy TOPSIS approach for group multi-criteria supplier selection problem. Engineering Applications of Artificial Intelligence, 25, 507–519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiza Hamdi.

Appendix

Appendix

See Table 8.

Table 8 Summary of the decision approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdi, F., Ghorbel, A., Masmoudi, F. et al. Optimization of a supply portfolio in the context of supply chain risk management: literature review. J Intell Manuf 29, 763–788 (2018). https://doi.org/10.1007/s10845-015-1128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-015-1128-3

Keywords

Navigation