[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Simulation-based conjoint ranking for optimal decision support process under aleatory uncertainty

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Design chain management requires many decision makers throughout the product development process. It is critical to reduce complexity and uncertainty of the design process by correctly modeling subjective data associated with decision makers’ preferences. This paper aims at using decision support to find optimal designs by modeling respondent preferences and trade-offs with consideration of uncertainty. Specifically, a simulation-based ranking methodology is implemented and incorporated with traditional conjoint analysis. This process facilitates a schematic decision support process by alleviating user fatigue. In addition, incorporation of uncertainty in the ranking process provides the capability of producing robust and reliable products. The efficacy and applicability of simulation-based conjoint ranking is demonstrated with a case study of a power-generating shock absorber design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamowicz W., Louviere J., Williams M. (1994) Combining revealed and stated preference methods for value environmental amenities. Journal of Environmental Economics and Management 26(3): 271–292

    Article  Google Scholar 

  • Amarchinta H., Grandhi R. V. (2008) Multi-attribute structural optimization based on conjoint analysis. AIAA Journal 46(4): 884–893

    Article  Google Scholar 

  • Arnaout J.-P., Rabadi G., Musa R. (2010) A two-stage ant colony optimization algorithm to minimize the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent Manufacturing 21(6): 693–701

    Article  Google Scholar 

  • Bech M., Gyrd-Hansen D. (2006) Effects coding in discrete choice experiments. Health Economics 14(10): 1079–1083

    Article  Google Scholar 

  • Belegundu A. D., Chandrupatla T. R. (2000) Optimization concepts and applications in engineering. Prentice-Hall, NJ

    Google Scholar 

  • Box G. E., Hunter W. G., Hunter J. S. (2005) Statistics for experimenters: Design, innovation, and discovery. Wiley, New York

    Google Scholar 

  • Bretscher O. (1995) Linear algebra With applications. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Choi S. (2009) Reliability assessment using stochastic local regression. International Journal of Reliability and Safety 3(123): 267–285

    Article  Google Scholar 

  • Choi S.K., Patel J. (2011) Optimal design of cellular structures under random fields. Journal of Engineering Design 22(9): 651–668

    Article  Google Scholar 

  • Choi S. K., Grandhi R. V., Canfield R. (2006) Reliability-based structural design. Springer, Berlin

    Google Scholar 

  • Clemen R. T. (1997) Making hard decision: An introduction to decision analysis. South-Western College Pub, Cincinnati

    Google Scholar 

  • Dynamic Modeling Laboratory: (2002) Dymola user’s manual. Dynasim AB, Sweden

    Google Scholar 

  • Green P., Carroll J., Goldberg S. (1981) A general approach to product design optimization via conjoint analysis. Journal of Marketing 43(Summer): 17–35

    Article  Google Scholar 

  • Haimes Y. Y. (1998) Risk modeling, assessment, and management. Wiley, New York

    Google Scholar 

  • Hayes B. E. (1997) Measuring customer satisfaction: Survey design, use, and statistical analysis methods. American Society for Quality, Milwaukee

    Google Scholar 

  • Hazelrigg G. A. (1998) A framework for decision-based engineering design. Journal of Mechanical Design 120(4): 653–658

    Article  Google Scholar 

  • Hazelrigg G. A. (2003) Validation of engineering design alternative selection methods. Engineering Optimization 35(2): 103– 120

    Article  Google Scholar 

  • Herrmann, J. W. (2008). Decision-based design processes. Technical Report No. 2008-1. College Park, MD: University of Maryland.

  • Hyde K.M., Maier H.R., Colby C.B. (2004) Reliability-based approach to multicriteria decision analysis for water resources. Journal of Water Resources Planning and Management 130(6): 429–438

    Article  Google Scholar 

  • Keeney R. L. (1973) A decision analysis with multiple objectives: The Mexico city airport. Bell Journal of Economics and Management Science 4(1): 101–117

    Article  Google Scholar 

  • Keeney R. L., Raiffa H. (1993) Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge University Press, New York, NY

    Google Scholar 

  • Lewis K., Chen W., Schmidt L. C. (2006) Decision making in engineering design. ASME Press, New York

    Book  Google Scholar 

  • Messac A. (1996) Physical programming: Effective optimization for computational design. AIAA Journal 34(1): 149–158

    Article  Google Scholar 

  • Mizuno S., Akao Y., Ishihara K. (1994) Quality function deployment: The customer-driven approach to quality planning and deployment. Asian Productivity Organization, Tokyo

    Google Scholar 

  • Orme B. K. (2006) Getting started with conjoint analysis: Strategies for product design and pricing research. Research Publishers LLC, Wisconsin

    Google Scholar 

  • Park K.-S., Koh H.-M. (2004) Preference-based optimum design of an integrated structural control system using genetic algorithms. Advances in Engineering Software 35(2): 85–94

    Article  Google Scholar 

  • PES. (2005). Power-generating shock absorber. Pure Energy Systems, Wiki, http://www.peswiki.com/index.php/Directory:Power-Generating_Shock_Absorber.

  • Phoenix. (2010). http://www.phoenix-int.com/software/phx_modelcenter.php.

  • Reutterer T., Kotzab H. W. (2000) The use of conjoint analysis for measuring preferences in supply chain design. Industrial Marketing Management 29(1): 27–35

    Article  Google Scholar 

  • Stewart M.G., Rosowsky D.V., Val D.V. (2001) Reliability-based bridge assessment using risk-ranking decision analysis. Structural Safety 23(4): 397–405

    Article  Google Scholar 

  • Sawtooth Software: (2002) CVA: A full-profile conjoint analysis system from sawtooth software. Sawtooth Software Inc., Sequim, WA

    Google Scholar 

  • Tabucanon M. T. (1989) Multiple criteria decision making in industry. Elsevier, Amsterdam

    Google Scholar 

  • Tappeta R. V., Renaud J. E., Messac A., Sundararaj G. J. (2000) Interactive physical programming: Tradeoff analysis and decision making in multidisciplinary optimization. AIAA Journal 38(5): 917–926

    Article  Google Scholar 

  • Theil H. (1969) A multinomial extension of the linear logit model. International Economic Review 10(3): 251–259

    Article  Google Scholar 

  • Thevenot H. J., Steva E. D., Okudan G. E., Simpson T. W. (2007) A multiattribute utility theory-based method for product line selection. Journal of Mechanical Design 29(11): 1179–1184

    Article  Google Scholar 

  • Tseng M. M., Jiao J. (1999) Methodology of developing product family architecture for mass customization. Journal of Intelligent Manufacturing 10(1): 3–20

    Article  Google Scholar 

  • Twigg D. (1998) Managing product development within a design chain. International Journal of Operations & Production Management 18(5): 508–524

    Article  Google Scholar 

  • Ulrich K. T., Eppinger S. D. (2007) Product design and development (4th ed.). McGraw-Hill, New York

    Google Scholar 

  • Wassenaar H.J., Chen W., Cheng J., Sudjianto A. (2003) Demand analysis for decision-based design of vehicle engine. SAE Transactions 113(5): 677–684

    Google Scholar 

  • Wolberg J. (2005) Data analysis using the method of least squares: Extracting the most information from experiments. Springer, Berlin

    Google Scholar 

  • Yu L., Wang L. (2010) Product Portfolio identification with data mining based on multi-objective GA. Journal of Intelligent Manufacturing 21(6): 797–810

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Kyum Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruderman, A.M., Choi, SK. & Jiao, R.J. Simulation-based conjoint ranking for optimal decision support process under aleatory uncertainty. J Intell Manuf 24, 641–652 (2013). https://doi.org/10.1007/s10845-011-0610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-011-0610-9

Keywords

Navigation