[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Bayesian network for burr detection in the drilling process

  • Review Article
  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

One of the most important processes in the aeronautical sector is drilling. The main problem associated with drilling is burr. There is a tolerance level for this burr and it cannot exceed 127 microns, which would provoke structural damage and other problems. Currently, the burr elimination task is carried out visually and manually with the aim of guaranteeing quality in the process. However, it is an expensive procedure and needs to be replaced by a motorized system capable of automatically detecting in which holes the burr exceeds the permitted level and has to be eliminated or reduced. The paper presents a burr prediction model for high speed drilling in dry conditions on aluminium (Al 7075-T6), based on a Bayesian network learned from a set of experiments based on parameters taken from the internal signal of the machine and parameters from the condition process. The paper shows the efficiency and validity of the model in the prediction of the apparition of burr during the drilling and compares the results with other data-mining techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aha D., Kibler D. (1991) Instance-based learning algorithms. Machine Learning 6: 37–66

    Google Scholar 

  • Arana, R., Aizpurua, G., Ferreiro, S., & Gorritxategi, E. (2006). Classical versus Machine Learning procedure for detection on burr in drilling. In 16th international conference on flexible automation and intelligent manufacturing (FAIM 2006) (pp. 509–516). Limerick, Ireland.

  • Arnaiz, A., & Arzamendi, J. (2003). Adaptative diagnostic systems by means of Bayesian networks. In 16th international congress on condition monitoring and diagnostic engineering management (COMADEM 2003) (pp 155–164). Växjö, Sweden.

  • Byington, C. S., Roemer, M. J., & Galie, T. (2002). Prognostic enhancements to diagnostic systems for improved condition-based maintenance. In 2002 IEEE aerospace conference proceedings. doi:10.1109/AERO.2002.1036120.

  • Cendrowska J. (1987) PRISM: An algorithm for inducing modular rules. International Journal of Man-Machine Studies 27(4): 349–370

    Article  Google Scholar 

  • Chang S. S. F., Bone G. M. (2010) Burr height model for vibration assisted drilling of aluminum 6061-T6. Precision Engineering 34: 369–375

    Article  Google Scholar 

  • Cooper, G. F., Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309–347.

    Google Scholar 

  • Correa, M., Bielza, C., de J. Ramírez, M., Alique, J. R. (2008). A Bayesian networks model for surface roughness prediction in the machining process. International Journal of Systems Science, 39, 1181–1192.

    Article  Google Scholar 

  • Correa M., Bielza C., Pamies-Teixeira J. (2009) Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications 36: 7270–7279

    Article  Google Scholar 

  • Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuousvalued attributes for classification learning. In 13th international joint conference on artificial intelligence (IJCAI’93) (pp. 1022–1027). Chambery, France.

  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17, pp. 37–54. http://www.aaai.org/ojs/index.php/aimagazine/article/view/1230/1131.pdf .

  • Ferreiro, S., Arana, R., Aizpurua, G., Aramendi, G., Arnaiz, A., & Sierra, B. (2009). Data mining for burr detection (in the Drilling Process). In Proceedings of distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living, Pt li, 5518, pp. 1264–1273. doi:10.1007/978-3-642-02481-8_188.

  • Ferreiro, S., Sierra, B., Irigoien, I., & Gorritxategi, E. (2010). Bayesian network for quality control in the drilling process. In 10th IFAC Workshop on intelligent manufacturing systems (IMS’10) (pp. 283–288). Lisbon, Portugal.

  • Ferreiro, S., & Arnaiz, A. (2010). Improving aircraft maintenance with innovative prognostics and health management techniques. Case of study: Brake wear degradation. In 2nd international conference on agents and artificial intelligence (ICAART 2010) (pp. 568–575). Valencia, Spain.

  • Gaitonde V. N., Karnik S. R., Achyutha B. T., Siddeswarappa B. (2008a) Genetic algorithm-based burr size minimization in drilling of AISI 316L stainless steel. Journal of Materials Processing Technology 197(1–3): 225–236

    Article  Google Scholar 

  • Gaitonde V. N., Karnik S. R., Achyutha B. T., Siddeswarappa B. (2008b) Taguchi optimization in drilling of AISI 316L stainless steel to minimize burr size using multi-performance objective based on membership function. Journal of Materials Processing Technology 202(1–3): 374–379

    Article  Google Scholar 

  • Goode, K. B., & Roylance, B. (1999). Predicting the time to failure of critical components—A software package strategy. In Condition monitoring ‘99 conference proceedings (pp. 547–555). Swansea, United Kingdom.

  • Hall, M. A. (1999). Correlation-based feature subset selection for machine learning. PhD dissertation. Department of Computer Science, University of Waikato.

  • Hall, M. A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In 7th international conference on machine learning (ICML 2000) (pp. 359–366). Stanford, CA, United States.

  • Hambli R. (2002) Prediction of burr height formation in blanking processes using neural network. International Journal of Mechanical Sciences 44: 2089–2102

    Article  Google Scholar 

  • Hand D. J., Mannila H., Smyth P. (2001) Principles of data mining. The MIT Press, Cambridge

    Google Scholar 

  • Heisel U., Luik M., Eisseler R., Schaal M. (2005) Prediction of parameters for the burr dimensions in short-hole drilling. Annals of the CIRP 54(1): 79–82

    Article  Google Scholar 

  • How T., Liu W., Lin L. (2003) Intelligent remote monitoring and diagnosis of manufacturing processes using an integrated approach of neural networks and rough sets. Journal of Intelligent Manufacturing 14: 239–253

    Article  Google Scholar 

  • Inza I., Larrañaga P., Etxeberria R., Sierra B. (2000) Feature subset selection by Bayesian network-based optimization. Artificial Intelligence 123: 157–184

    Article  Google Scholar 

  • Inza I., Larrañaga P., Sierra B. (2001) Feature subset selection by Bayesian networks: a comparison with genetic and sequential algorithms. International Journal of Approximate Reasoning 27: 143–164

    Article  Google Scholar 

  • Jensen F. V. (1996) An introduction to Bayesian networks. Springer-Verlag, New York

    Google Scholar 

  • Jordan M. I. (1999) Learning in graphical models (1st ed.). MIT Press, Cambridge

    Google Scholar 

  • Kaelbling, L. P., & Cohn, D. P. (Eds.) (2003). Special Issue on Feature Subset Selection. Journal of Machine Learning Research 3.

  • Kazakov, D., & Kudenko, D. (2001). Machine learning and ILP for MAS. In Advanced course on artificial intelligence (ACAI 2001), Lecture Notes in Artificial Intelligence (vol. 2086, pp. 246–270). Prague, Czech Republic.

  • Kim J., Min S., Dornfeld D. A. (2000) Optimization and control of drilling burr formation of AISI 304L and AISI 4118 based on drilling burr control charts. International Journal of Machine Tools & Manufacture 41: 923–936

    Article  Google Scholar 

  • Kohavi R., John G. H. (1997) Wrappers for feature subset selection. Artificial Intelligence 97(1–2): 273–324

    Article  Google Scholar 

  • Kononenko, I. (1995). On biases in estimating multi-valued attributes. In 14th international joint conference on artificial intelligence (pp. 1034–1040). Montréal, Canada.

  • Larrañaga, P., & Moral, S. (2008). Probabilistic graphical models in artificial intelligence. Applied Soft Computing (in press). doi:10.1016/j.asoc.2008.01.003.

  • Lauderbaugh L. K. (2009) Analysis of the effects of process parameters on exit burrs in drilling using a combined simulation and experimental approach. Journal of materials processing technology 209(4): 1909–1919

    Article  Google Scholar 

  • Lazkano E., Sierra B., Astigarraga A., Martínez-Otzeta J. M. (2007) On the use of Bayesian Networks to develop behaviours for mobile robots. Robotics and Autonomous Systems 55: 253–265

    Article  Google Scholar 

  • Liu, H., & Setiono, R. (1996a). Feature selection and classification—A probabilistic wrapper approach. In 9th international conference on industrial and engineering applications of AI and ES (pp 287–292). Fukuoka, Japan.

  • Liu, H., & Setiono, R. (1996b). A probabilistic approach to feature selection—A filter solution. In 13th International Conference on Machine Learning (ICML’96) (pp. 319–327). Bari, Italy.

  • Malakooti B., Raman V. (2000) An interactive multi-objective artificial neural network approach for machine setup optimization. Journal of Intelligent Manufacturing 11: 41–50

    Article  Google Scholar 

  • Michalski R. S., Bratko I., Kubat M. (1998) Machine learning and data mining: Methods and applications. Wiley, New York

    Google Scholar 

  • Min S., Kim J., Dornfeld D. A. (2001) Development of a drilling burr control chart for low alloy steel, AISI 4118. Journal of Materials Processing Technology 113: 4–9

    Article  Google Scholar 

  • Neapolitan R. E. (2004) Learning Bayesian networks. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Nieves, J., Santos, I., Penya, Y. K., Rojas, S., Salazar, M., & Bringas, P. G. (2009). Mechanical properties prediction in high-precision foundry production. In 7th IEEE International Conference on Industrial Informatics (INDIN’09) (pp. 31–36). Cardiff, Wales, United Kingdom.

  • Onisko, A., Druzdzel, M. J., & Wasyluk, H. (1998). A probabilistic causal model for diagnosis of liver disorders. In 7th intelligent international symposium on intelligent information systems (IIS’98) (pp. 379–387). Malbork, Poland.

  • Oukhellou L., Côme E., Bouillaut L., Aknin P. (2008) Combined use of sensor data and structural knowledge processed by Bayesian network: Application to a railway diagnosis aid scheme. Transportation Research Part C-Emerging Technologies 16: 755–767

    Article  Google Scholar 

  • Pearl J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers, California

    Google Scholar 

  • Pearl J. (2000) Causality: Models, reasoning, and inference. Cambridge University Press, London

    Google Scholar 

  • Peña B., Aramendi G., Rivero A., Lópezde LaCalle L. N. (2005) Monitoring of drilling for burr detection using spindle torque. International Journal of Machine Tools & Manufacture 45: 1614–1621

    Article  Google Scholar 

  • Peña, B., Aramendi, G., & Rivero, M. A. (2007). Method for monitoring burr formation in processes involving the drilling of parts. WO2007/065959A1.

  • Pérez A., Larrañaga P., Inza I. (2009) Bayesian classifiers based on kernel density estimation: Flexible classifiers. International Journal of Approximate Reasoning 50(2): 341–362

    Article  Google Scholar 

  • Quinlan R. (1986) Induction of decision trees. Machine Learning 1(1): 81–106

    Google Scholar 

  • Santos, I., Nieves, J., Penya, Y. K., & Bringas, P. G. (2009). Optimising machine-learning-based fault prediction in foundry production. In 10th International work-conference on artificial neural networks (IWANN 2009) (pp. 554–561). Salamanca, Spain.

  • Sierra B., Larrañaga P. (1998) Predicting survival in malignant Skull melanoma using Bayesian Networks automatically induced by genetic algorithms. An empirical comparison between different approaches. Artificial Intelligence in Medicine 14: 215–230

    Article  Google Scholar 

  • Sierra B., Lazkano E., Jauregi E., Irigoien I. (2009) Histogram distance based Bayesian network structure learning: A supervised classification specific approach. Decision Support Systems 48: 180–190

    Article  Google Scholar 

  • Umbrello D., Ambrogio G., Filice L., Guerriero F., Guido R. (2009) A clustering approach for determining the optimal process parameters in cutting. Journal of Intelligen Manufacturing 21(6): 787–795

    Article  Google Scholar 

  • Wang K. (2007) Applying data mining to manufacturing: The nature and implications. Journal of Intelligent Manufacturing 18(4): 487–495

    Article  Google Scholar 

  • Witten I. H., Frank E. (2000) Data mining: Practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, San Francisco

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Ferreiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreiro, S., Sierra, B., Irigoien, I. et al. A Bayesian network for burr detection in the drilling process. J Intell Manuf 23, 1463–1475 (2012). https://doi.org/10.1007/s10845-011-0502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-011-0502-z

Keywords

Navigation