Abstract
The Drug Design Data Resource (D3R) Grand Challenges present an opportunity to assess, in the context of a blind predictive challenge, the accuracy and the limits of tools and methodologies designed to help guide pharmaceutical drug discovery projects. Here, we report the results of our participation in the D3R Grand Challenge 4 (GC4), which focused on predicting the binding poses and affinity ranking for compounds targeting the \(\beta\)-amyloid precursor protein (BACE-1). Our ligand similarity-based protocol using HYBRID (OpenEye Scientific Software) successfully identified poses close to the native binding mode for most of the ligands with less than 2 Å RMSD accuracy. Furthermore, we compared the performance of our HYBRID-based approach to that of AutoDock Vina and DOCK 6 and found that using a reference ligand to guide the docking process is a better strategy for pose prediction and helped HYBRID to perform better here. We also conducted end-point free energy estimates on molecules dynamics based ensembles of protein-ligand complexes using molecular mechanics combined with generalized Born surface area method (MM-GBSA). We found that the binding affinity ranking based on MM-GBSA scores have poor correlation with the experimental values. Finally, the main lessons from our participation in D3R GC4 are: (i) the generation of the macrocyclic conformers is a key step for successful pose prediction, (ii) the protonation states of the BACE-1 binding site should be treated carefully, (iii) the MM-GBSA method could not discriminate well between different predicted binding poses, and (iv) the MM-GBSA method does not perform well at predicting protein–ligand binding affinities here.
Similar content being viewed by others
References
Sousa SF, Fernandes PA, Ramos MJ (2006) Proteins Struct Funct Bioinform 65(1):15. https://doi.org/10.1002/prot.21082
Gilson MK, Zhou HX (2007) Annu Rev Biophys Biomol Struct. https://doi.org/10.1146/annurev.biophys.36.040306.132550
Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21(2):150. https://doi.org/10.1016/j.sbi.2011.01.011
Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) Nat Neurosci 4(3):233. https://doi.org/10.1038/85064
Toulokhonova L, Metzler WJ, Witmer MR, Copeland RA, Marcinkeviciene J (2003) J Biol Chem 278(7):4582. https://doi.org/10.1074/jbc.M210471200
McGann M (2012) J Comput Aided Mol Des 26(8):897. https://doi.org/10.1007/s10822-012-9584-8
Genheden S, Ryde U (2015) Expert Opin Drug Discov 10(5):449. https://doi.org/10.1517/17460441.2015.1032936
Trott O, Olson AJ (2010) J Comput Chem 31(2):455. https://doi.org/10.1002/jcc.21334
Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) J Comput Chem 36(15):1132. https://doi.org/10.1002/jcc.23905
Maggiora G, Vogt M, Stumpfe D, Bajorath J (2013) J Med Chem 57(8):3186. https://doi.org/10.1021/jm401411z
Fukunishi Y, Nakamura H (2008) J Mol Graph Model 26(6):1030. https://doi.org/10.1016/j.jmgm.2007.07.001
Kelley BP, Brown SP, Warren GL, Muchmore SW (2015) J Chem Inf Model 55:1771. https://doi.org/10.1021/acs.jcim.5b00142
Wu G, Vieth M (2004) J Med Chem 47(12):3142. https://doi.org/10.1021/jm040015y
Kumar A, Zhang KY (2018) J Comput Aided Mol Des. https://doi.org/10.1007/s10822-018-0142-x
Gaieb Z, Parks CD, Chiu M, Yang H, Shao C, Walters WP, Lambert MH, Nevins N, Bembenek SD, Ameriks MK, Mirzadegan T, Burley SK, Amaro RE, Gilson MK (2019) J Comput Aided Mol Des. https://doi.org/10.1007/s10822-018-0180-4
Gilliland G, Berman HM, Weissig H, Shindyalov IN, Westbrook J, Bourne PE, Bhat TN, Feng Z (2000) Nucleic Acids Res 28(1):235. https://doi.org/10.1093/nar/28.1.235
Kortum SW, Benson TE, Bienkowski MJ, Emmons TL, Prince DB, Paddock DJ, Tomasselli AG, Moon JB, LaBorde A, TenBrink RE (2007) Bioorg Med Chem Lett 17(12):3378. https://doi.org/10.1016/j.bmcl.2007.03.096
Clarke B, Demont E, Dingwall C, Dunsdon R, Faller A, Hawkins J, Hussain I, MacPherson D, Maile G, Matico R, Milner P, Mosley J, Naylor A, O’Brien A, Redshaw S, Riddell D, Rowland P, Soleil V, Smith KJ, Stanway S, Stemp G, Sweitzer S, Theobald P, Vesey D, Walter DS, Ward J, Wayne G (2008) Bioorg Med Chem Lett 18(3):1017. https://doi.org/10.1016/j.bmcl.2007.12.019
Machauer R, Laumen K, Veenstra S, Rondeau JM, Tintelnot-Blomley M, Betschart C, Jaton AL, Desrayaud S, Staufenbiel M, Rabe S, Paganetti P, Neumann U (2009) Bioorg Med Chem Lett 19(5):1366. https://doi.org/10.1016/j.bmcl.2009.01.055
Lerchner A, Machauer R, Betschart C, Veenstra S, Rueeger H, McCarthy C, Tintelnot-Blomley M, Jaton AL, Rabe S, Desrayaud S, Enz A, Staufenbiel M, Paganetti P, Rondeau JM, Neumann U (2010) Bioorg Med Chem Lett 20(2):603. https://doi.org/10.1016/j.bmcl.2009.11.092
Sandgren V, Agback T, Johansson PO, Lindberg J, Kvarnström I, Samuelsson B, Belda O, Dahlgren A (2012) Bioorg Med Chem 20(14):4377. https://doi.org/10.1016/j.bmc.2012.05.039
Coburn CA, Stachel SJ, Jones KG, Steele TG, Rush DM, DiMuzio J, Pietrak BL, Lai MT, Huang Q, Lineberger J, Jin L, Munshi S, Katharine Holloway M, Espeseth A, Simon A, Hazuda D, Graham SL, Vacca JP (2006) Bioorg Med Chem Lett 16(14):3635. https://doi.org/10.1016/j.bmcl.2006.04.076
Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) Nucleic Acids Res 32(Suppl 2):W665. https://doi.org/10.1093/nar/gkh381
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25(13):1605. https://doi.org/10.1002/jcc.20084
Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) J Chem Inf Model 50(4):572. https://doi.org/10.1021/ci100031x
Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49(20):5912. https://doi.org/10.1021/jm050362n
Ellis CR, Tsai CC, Hou X, Shen J (2016) J Phys Chem Lett 7(6):944. https://doi.org/10.1021/acs.jpclett.6b00137
Case D, Brozell S, Cerutti D, Cheatham TI, Cruzeiro V, Darden T, Duke R, Ghoreishi D, Gohlke H, Goetz A, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Lee T, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz K, Miao Y, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe D, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling C, Smith J, Swails J, Walker R, Wang J, Wei H, Wolf R, Wu X, Xiao L, York D, Kollman P (2018) Amber 2018. University of California, San Francisco
Case D, Cerutti D, Cheateham T, Darden T, Duke R, Giese T, Gohlke H, Goetz A, Greene D, Homeyer N, Simmerling C, Botello-Smith W, Swail J, Walker R, Wang J, Wolf R, Wu X, Xiao L, Kollman P (2016) Amber 2016. University of California, San Francisco
Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623. https://doi.org/10.1002/jcc.10128
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins Struct Funct Bioinform 65:712. https://doi.org/10.1002/prot.21123
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157. https://doi.org/10.1002/jcc.20035
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79(2):926. https://doi.org/10.1063/1.445869
Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) J Chem Theory Comput 8(9):3314. https://doi.org/10.1021/ct300418h
Nguyen H, Roe DR, Simmerling C (2013) J Chem Theory Comput 9(4):2020. https://doi.org/10.1021/ct3010485
Liu K, Kokubo H (2017) J Chem Inf Model 57(10):2514. https://doi.org/10.1021/acs.jcim.7b00412
Kaus JW, Harder E, Lin T, Abel R, McCammon JA, Wang L (2015) J Chem Theory Comput 11(6):2670. https://doi.org/10.1021/acs.jctc.5b00214
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30(16):2785. https://doi.org/10.1002/jcc.21256
DesJarlais RL, Sheridan RP, Seibel GL, Dixon JS, Kuntz ID, Venkataraghavan R (1988) J Med Chem 31(4):722. https://doi.org/10.1021/jm00399a006
Meng EC, Shoichet BK, Kuntz ID (1992) J Comput Chem 13(4):505. https://doi.org/10.1002/jcc.540130412
Yu HS, Deng Y, Wu Y, Sindhikara D, Rask AR, Kimura T, Abel R, Wang L (2017) J Chem Theory Comput 13(12):6290. https://doi.org/10.1021/acs.jctc.7b00885
Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K (2011) J Comput Chem 32(4):742. https://doi.org/10.1002/jcc.21643
Poongavanam V, Danelius E, Peintner S, Alcaraz L, Caron G, Cummings MD, Wlodek S, Erdelyi M, Hawkins PCD, Ermondi G, Kihlberg J (2018) ACS Omega 3(9):11742. https://doi.org/10.1021/acsomega.8b01379
Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Nature 402(6761):537. https://doi.org/10.1038/990114
Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N (2008) Mol Cell Biol 28(11):3663. https://doi.org/10.1128/MCB.02185-07
Mermelstein DJ, McCammon JA, Walker RC (2019) J Mol Recognit 32(3):e2765. https://doi.org/10.1002/jmr.2765
Ellis CR, Shen J (2015) J Am Chem Soc 137(30):9543. https://doi.org/10.1021/jacs.5b05891
Kim MO, Blachly PG, McCammon JA (2015) PLoS Comput Biol 11(10):1. https://doi.org/10.1371/journal.pcbi.1004341
Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7(2):525. https://doi.org/10.1021/ct100578z
El Khoury L, Santos-Martins D, Sasmal S, Eberhardt J, Bianco G, Ambrosio F, Solis-Vasquez L, Koch A, Mobley DL, Forli S (2019) J Comput Aided Mol Des. https://doi.org/10.1007/s10822-019-00240-w
Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) J Comput Chem 31(4):797. https://doi.org/10.1002/jcc.21372
Lyne PD, Lamb ML, Saeh JC (2006) J Med Chem 49(16):4805. https://doi.org/10.1021/jm060522a
Su PC, Tsai CC, Mehboob S, Hevener KE, Johnson ME (2015) J Comput Chem 36(25):1859. https://doi.org/10.1002/jcc.24011
Réau M, Langenfeld F, Zagury JF, Montes M (2018) J Comput Aided Mol Des 32(1):231. https://doi.org/10.1007/s10822-017-0063-0
Misini Ignjatović M, Caldararu O, Dong G, Muñoz-Gutierrez C, Adasme-Carreño F, Ryde U (2016) J Comput Aided Mol Des 30(9):707. https://doi.org/10.1007/s10822-016-9942-z
Salmaso V, Sturlese M, Cuzzolin A, Moro S (2018) J Comput Aided Mol Des 32(1):251. https://doi.org/10.1007/s10822-017-0051-4
Shirts MR, Mobley DL, Brown SP (2010) Drug design: structure- and ligand-based approaches. Cambridge University Press, New York, pp 61–86
Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U (2012) J Comput Aided Mol Des 26(5):527. https://doi.org/10.1007/s10822-011-9524-z
Thompson DC, Humblet C, Joseph-McCarthy D (2008) J Chem Inf Model 48(5):1081. https://doi.org/10.1021/ci700470c PMID: 18465849
Acknowledgements
We particularly appreciate Christopher I. Bayly (OpenEye Scientific Software) for his insight on BACE-1 protonation states and different modeling techniques. We would like to thank OpenEye Scientific Software for providing us (via an academic license) with many of the pieces of software used in this work. Molecular graphics used in the paper were generated using Chimera (University of California, San Francisco) [24]. LEK and SS thanks Caitlin Bannan for helpful discussions on pKa of small molecules. SS also thanks Mark McGann (OpenEye Scientific Software) for discussing macrocycle conformer generation using OMEGA. We also appreciate financial support from the National Institutes of Health (1R01GM108889-01 and 1R01GM124270-01A1). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sasmal, S., El Khoury, L. & Mobley, D.L. D3R Grand Challenge 4: ligand similarity and MM-GBSA-based pose prediction and affinity ranking for BACE-1 inhibitors. J Comput Aided Mol Des 34, 163–177 (2020). https://doi.org/10.1007/s10822-019-00249-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-019-00249-1