[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this work, quantum mechanical methods were used to predict the microscopic and macroscopic pKa values for a set of 24 molecules as a part of the SAMPL6 blind challenge. The SMD solvation model was employed with M06-2X and different basis sets to evaluate three pKa calculation schemes (direct, vertical, and adiabatic). The adiabatic scheme is the most accurate approach (RMSE = 1.40 pKa units) and has high correlation (R2 = 0.93), with respect to experiment. This approach can be improved by applying a linear correction to yield an RMSE of 0.73 pKa units. Additionally, we consider including explicit solvent representation and multiple lower-energy conformations to improve the predictions for outliers. Adding three water molecules explicitly can reduce the error by 2–4 pKa units, with respect to experiment, whereas including multiple local minima conformations does not necessarily improve the pKa prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang Y, Xing J, Xu Y et al (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48:488–515. https://doi.org/10.1017/S0033583515000190

    Article  Google Scholar 

  2. Zevatskii YE, Samoilov DV (2011) Modern methods for estimation of ionization constants of organic compounds in solution. Russ J Org Chem 47:1445–1467. https://doi.org/10.1134/S1070428011100010

    Article  CAS  Google Scholar 

  3. Seybold PG, Shields GC (2015) Computational estimation of pK a values. Wiley Interdiscip Rev Comput Mol Sci 5:290–297. https://doi.org/10.1002/wcms.1218

    Article  CAS  Google Scholar 

  4. Lee AC, Crippen GM (2009) Predicting pKa. J Chem Inf Model 49:2013–2033. https://doi.org/10.1021/ci900209w

    Article  CAS  Google Scholar 

  5. Fraczkiewicz R, Lobell M, Goller AH et al (2015) Best of both worlds: combining pharma data and state of the art modeling technology to improve in silico pKa prediction. J Chem Inf Model 55:389–397. https://doi.org/10.1021/ci500585w

    Article  CAS  PubMed  Google Scholar 

  6. Shelley JC, Cholleti A, Frye LL et al (2007) Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691. https://doi.org/10.1007/s10822-007-9133-z

    Article  CAS  PubMed  Google Scholar 

  7. Software OS (2018) OpenEye Toolkits

  8. Advanced Chemistry Development I (2015) ACD/Percepta

  9. Wells PR (1963) Linear free energy relationships. Chem Rev 63:171–219. https://doi.org/10.1021/cr60222a005

    Article  CAS  Google Scholar 

  10. Casasnovas R, Ortega-Castro J, Frau J et al (2014) Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles. Int J Quantum Chem 114:1350–1363. https://doi.org/10.1002/qua.24699

    Article  CAS  Google Scholar 

  11. Ho J (2014) Predicting pKa in implicit solvents: current status and future directions. Aust J Chem 67:1441. https://doi.org/10.1071/CH14040

    Article  CAS  Google Scholar 

  12. Bochevarov AD, Watson MA, Greenwood JR, Philipp DM (2016) Multiconformation, density functional theory-based pK a prediction in application to large, flexible organic molecules with diverse functional groups. J Chem Theory Comput 12:6001–6019. https://doi.org/10.1021/acs.jctc.6b00805

    Article  CAS  Google Scholar 

  13. Muckerman JT, Skone JH, Ning M, Wasada-Tsutsui Y (2013) Toward the accurate calculation of pKa values in water and acetonitrile. Biochim Biophys Acta 1827:882–891. https://doi.org/10.1016/j.bbabio.2013.03.011

    Article  CAS  Google Scholar 

  14. Jensen JH, Swain CJ, Olsen L (2017) Prediction of pKa values for druglike molecules using semiempirical quantum chemical methods. J Phys Chem A 121:699–707. https://doi.org/10.1021/acs.jpca.6b10990

    Article  CAS  PubMed  Google Scholar 

  15. Kromann JC, Larsen F, Moustafa H, Jensen JH (2016) Prediction of pKa values using the PM6 semiempirical method. PeerJ 4:e2335. https://doi.org/10.7717/peerj.2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 110:2822–2827. https://doi.org/10.1063/1.477924

    Article  CAS  Google Scholar 

  17. Pople JA, Head-Gordon M, Fox DJ et al (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629. https://doi.org/10.1063/1.456415

    Article  CAS  Google Scholar 

  18. Curtiss LA, Jones C, Trucks GW et al (1990) Gaussian-1 theory of molecular energies for second-row compounds. J Chem Phys 93:2537–2545. https://doi.org/10.1063/1.458892

    Article  CAS  Google Scholar 

  19. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230. https://doi.org/10.1063/1.460205

    Article  CAS  Google Scholar 

  20. Curtiss LA, Raghavachari K, Redfern PC et al (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776. https://doi.org/10.1063/1.477422

    Article  CAS  Google Scholar 

  21. DeYonker NJ, Cundari TR, Wilson AK (2006) The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. J Chem Phys. https://doi.org/10.1063/1.2173988

    Article  PubMed  Google Scholar 

  22. Ho J, Coote ML (2009) pKa calculation of some biologically important carbon acids—an assessment of contemporary theoretical procedures. J Chem Theory Comput 5:295–306. https://doi.org/10.1021/ct800335v

    Article  CAS  PubMed  Google Scholar 

  23. Tehan BG, Lloyd EJ, Wong MG, et al (2002) Estimation of pKa using semiempirical molecular orbital methods. Part 1: application to phenols and carboxylic acids. Quant Struct Act Relat 21:457–472. https://doi.org/10.1002/1521-3838(200211)21:5%3C457::AID-QSAR457%3E3.0.CO;2-5

    Article  CAS  Google Scholar 

  24. Liptak MD, Shields GC (2001) Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Int J Quantum Chem 85:727–741. https://doi.org/10.1002/qua.1703

    Article  CAS  Google Scholar 

  25. Liptak MD, Shields GC (2001) Accurate pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J Am Chem Soc 123:7314–7319. https://doi.org/10.1021/ja010534f

    Article  CAS  Google Scholar 

  26. Riojas AG, Wilson AK (2014) Solv-ccCA: implicit solvation and the correlation consistent composite approach for the determination of pKa. J Chem Theory Comput 10:1500–1510. https://doi.org/10.1021/ct400908z

    Article  CAS  Google Scholar 

  27. Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos Trans R Soc A 372:20120476. https://doi.org/10.1098/rsta.2012.0476

    Article  CAS  Google Scholar 

  28. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372. https://doi.org/10.1080/00268976.2017.1333644

    Article  CAS  Google Scholar 

  29. Cohen AJ, Mori-Sánchez P, Yang W (2012) Challenges for density functional theory. Chem Rev 112:289–320. https://doi.org/10.1021/cr200107z

    Article  CAS  PubMed  Google Scholar 

  30. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  31. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805. https://doi.org/10.1039/P29930000799

    Article  Google Scholar 

  32. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  Google Scholar 

  33. Lian P, Johnston RC, Parks JM, Smith JC (2018) Quantum chemical calculation of pK as of environmentally relevant functional groups: Carboxylic Acids, Amines, and Thiols in aqueous solution. J Phys Chem A 122(17):4366–4374

    Article  CAS  Google Scholar 

  34. Rustenburg AS, Dancer J, Lin B, Feng JA, Ortwine DF, Mobley DL, Chodera JD (2016) Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge. J Comput-Aided Mol Des 30(11):945–958

    Article  CAS  Google Scholar 

  35. Pickard FC, König G, Tofoleanu F, Lee J, Simmonett AC, Shao Y, Ponder JW, Brooks BR (2016) Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK a corrections. J Comput-Aided Mol Des 30(11):1087–1100

    Article  CAS  Google Scholar 

  36. Tissandier MD, Cowen KA, Feng WY et al (1998) The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102:7787–7794. https://doi.org/10.1021/jp982638r

    Article  CAS  Google Scholar 

  37. McQuarrie D (2011) Statistical mechanics. Viva Books, New Delhi

    Google Scholar 

  38. Ho J, Ertem MZ (2016) Calculating free energy changes in continuum solvation models. J Phys Chem B 120:1319–1329. https://doi.org/10.1021/acs.jpcb.6b00164

    Article  CAS  Google Scholar 

  39. Ho J (2015) Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials? Phys Chem Chem Phys 17:2859–2868. https://doi.org/10.1039/C4CP04538F

    Article  CAS  Google Scholar 

  40. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:1–14. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  41. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  42. Francl MM, Pietro WJ, Hehre WJ et al (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665. https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  43. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  44. Kesharwani MK, Brauer B, Martin JML (2015) Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J Phys Chem A 119:1701–1714. https://doi.org/10.1021/jp508422u

    Article  CAS  PubMed  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB et al (2016) Gaussian 16, revision A.03. 2016

  46. (2016) Molecular Operating Environment (MOE), 2016.08

  47. Klicić JJ, Friesner RA, Liu SY, Guida WC (2002) Accurate prediction of acidity constants in aqueous solution via density functional theory and self-consistent reaction field methods. J Phys Chem A 106:1327–1335. https://doi.org/10.1021/jp012533f

    Article  CAS  Google Scholar 

  48. Thapa B, Schlegel HB (2017) Improved pKa prediction of substituted alcohols, phenols, and hydroperoxides in aqueous medium using density functional theory and a cluster-continuum solvation model. J Phys Chem A 121:4698–4706. https://doi.org/10.1021/acs.jpca.7b03907

    Article  CAS  Google Scholar 

  49. Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pKa scale. J Phys Chem A 107:9380–9386. https://doi.org/10.1021/jp034688o

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the intramural research program of the National Heart, Lung and Blood Institute of the National Institutes of Health and utilized the high-performance computational capabilities of the LoBoS and Biowulf Linux clusters at the National Institutes of Health (http://www.lobos.nih.gov and http://biowulf.nih.gov). The authors would also like to thank Frank C. Pickard, IV and Samarjeet Prasad for the very helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Zeng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Jones, M.R. & Brooks, B.R. Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge. J Comput Aided Mol Des 32, 1179–1189 (2018). https://doi.org/10.1007/s10822-018-0150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0150-x

Keywords

Navigation