[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure–activity relationships within each ligand class, giving useful information for designing improved ligands.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ADP:

Adenosine-5′-diphosphate

ATP:

Adenosine-5′-triphosphate

cAMP:

Cyclic adenosine monophosphate

CHO:

Chinese hamster ovary

CNS:

Central nervous system

CRE:

cAMP response element

ECFP:

Enhanced cyan fluorescent protein

EL:

Extracellular loop

GPCR:

G protein-coupled receptor

MD:

Molecular dynamics

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

RMSD:

Root-mean-square deviation

SAR:

Structure–activity relationship

SuMD:

Supervised molecular dynamics

TM:

Transmembrane helix

UDP:

Uridine-5′-diphosphate

UTP:

Uridine-5′-triphosphate

References

  1. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  Google Scholar 

  2. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  CAS  Google Scholar 

  3. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207

    Article  CAS  Google Scholar 

  4. Hourani SM, Cusack NJ (1991) Pharmacological receptors on blood platelets. Pharmacol Rev 43:243–298

    CAS  Google Scholar 

  5. Jacobson KA, Deflorian F, Mishra S, Costanzi S (2011) Pharmacochemistry of the platelet purinergic receptors. Purinergic Signal 7:305–324

    Article  CAS  Google Scholar 

  6. Debnath B, Al-Mawsawi LQ, Neamati N (2010) Are we living in the end of the blockbuster drug era? Drug News Perspect 23:670–684

    Article  Google Scholar 

  7. Horváth G, Gölöncsér F, Csölle C, Király K, Andó RD, Baranyi M, Koványi B, Máté Z, Hoffmann K, Algaier I, Baqi Y, Müller CE, Von Kügelgen I, Sperlágh B (2014) Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents. Neurobiol Dis pii S0969–9961(14):00175-2. doi:10.1016/j.nbd.2014.06.011

    Google Scholar 

  8. Herbert JM, Savi P (2003) P2Y12, a new platelet ADP receptor, target of clopidogrel. Semin Vasc Med 3:113–122

    Article  Google Scholar 

  9. Cristalli G, Podda GM, Costanzi S, Lambertucci C, Lecchi A, Vittori S, Volpini R, Zighetti ML, Cattaneo M (2005) Effects of 5′-phosphate derivatives of 2-hexynyl adenosine and 2-phenylethynyl adenosine on responses of human platelets mediated by P2Y receptors. J Med Chem 48:2763–2766

    Article  CAS  Google Scholar 

  10. Scarborough RM, Laibelman AM, Clizbe LA, Fretto LJ, Conley PB, Reynolds EE, Sedlock DM, Jantzen H (2001) Novel tricyclic benzothiazolo[2,3-c]thiadiazine antagonists of the platelet ADP receptor (P2Y12). Bioorg Med Chem Lett 11:1805–1808

    Article  CAS  Google Scholar 

  11. Bach P, Boström J, Brickmann K, van Giezen JJ, Hovland R, Petersson AU, Ray A, Zetterberg FA (2011) novel series of piperazinyl-pyridine ureas as antagonists of the purinergic P2Y12 receptor. Bioorg Med Chem Lett 21:2877–2881

    Article  CAS  Google Scholar 

  12. Bach P, Boström J, Brickmann K, van Giezen JJ, Groneberg RD, Harvey DM, O’Sullivan M, Zetterberg F (2013) Synthesis, structure-property relationships and pharmacokinetic evaluation of ethyl 6-aminonicotinate sulfonylureas as antagonists of the P2Y12 receptor. Eur J Med Chem 65:360–375

    Article  CAS  Google Scholar 

  13. Bach P, Boström J, Brickmann K, Burgess LE, Clarke D, Groneberg RD, Harvey DM, Laird ER, O’Sullivan M, Zetterberg F (2013) 5-alkyl-1,3-oxazole derivatives of 6-amino-nicotinic acids as alkyl ester bioisosteres are antagonists of the P2Y12 receptor. Future Med Chem 5:2037–2056

    Article  CAS  Google Scholar 

  14. Bach P, Antonsson T, Bylund R, Björkman JA, Österlund K, Giordanetto F, van Giezen JJ, Andersen SM, Zachrisson H, Zetterberg F (2013) Lead optimization of ethyl 6-aminonicotinate acyl sulfonamides as antagonists of the P2Y12 receptor, separation of the antithrombotic effect and bleeding for candidate drug AZD1283. J Med Chem 56:7015–7024

    Article  CAS  Google Scholar 

  15. Baqi Y, Atzler K, Köse M, Glänzel M, Müller CE (2009) High-affinity, non-nucleotide-derived competitive antagonists of platelet P2Y12 receptors. J Med Chem 52:3784–3793

    Article  CAS  Google Scholar 

  16. Parlow JJ, Burney MW, Case BL, Girard TJ, Hall KA, Hiebsch RR, Huff RM, Lachance RM, Mischke DA, Rapp SR, Woerndle RS, Ennis MD (2009) Piperazinyl-glutamate-pyrimidines as potent P2Y12 antagonists for inhibition of platelet aggregation. Bioorg Med Chem Lett 19:6148–6156

    Article  CAS  Google Scholar 

  17. Parlow JJ, Burney MW, Case BL, Girard TJ, Hall KA, Hiebsch RR, Huff RM, Lachance RM, Mischke DA, Rapp SR, Woerndle RS, Ennis MD (2009) Piperazinyl-glutamate-pyridines as potent orally bioavailable P2Y12 antagonists for inhibition of platelet aggregation. Bioorg Med Chem Lett 19:4657–4663

    Article  CAS  Google Scholar 

  18. Parlow JJ, Burney MW, Case BL, Girard TJ, Hall KA, Harris PK, Hiebsch RR, Huff RM, Lachance RM, Mischke DA, Rapp SR, Woerndle RS, Ennis MD (2010) Piperazinyl glutamate pyridines as potent orally bioavailable P2Y12 antagonists for inhibition of platelet aggregation. J Med Chem 53:2010–2037

    Article  CAS  Google Scholar 

  19. Parlow JJ, Burney MW, Case BL, Girard TJ, Hall KA, Harris PK, Hiebsch RR, Huff RM, Lachance RM, Mischke DA, Rapp SR, Woerndle RS, Ennis MD (2010) Part II: piperazinyl-glutamate-pyridines as potent orally bioavailable P2Y12 antagonists for inhibition of platelet aggregation. Bioorg Med Chem Lett 20:1388–1394

    Article  CAS  Google Scholar 

  20. Zech G, Hessler G, Evers A, Weiss T, Florian P, Just M, Czech J, Czechtizky W, Görlitzer J, Ruf S, Kohlmann M, Nazaré M (2012) Identification of high-affinity P2Y12 antagonists based on a phenylpyrazole glutamic acid piperazine backbone. J Med Chem 55:8615–8629

    Article  CAS  Google Scholar 

  21. Ingall AH, Dixon J, Bailey A, Coombs ME, Cox D, McInally JI, Hunt SF, Kindon ND, Teobald BJ, Willis PA, Humphries RG, Leff P, Clegg JA, Smith JA, Tomlinson W (1999) Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy. J Med Chem 42:213–220

    Article  CAS  Google Scholar 

  22. Xu B, Stephens A, Kirschenheuter G, Greslin AF, Cheng X, Sennelo J, Cattaneo M, Zighetti ML, Chen A, Kim SA, Kim HS, Bischofberger N, Cook G, Jacobson KA (2002) Acyclic analogues of adenosine bisphosphates as P2Y receptor antagonists: phosphate substitution leads to multiple pathways of inhibition of platelet aggregation. J Med Chem 45:5694–5709

    Article  CAS  Google Scholar 

  23. Springthorpe B, Bailey A, Barton P, Birkinshaw TN, Bonnert RV, Brown RC, Chapman D, Dixon J, Guile SD, Humphries RG, Hunt SF, Ince F, Ingall AH, Kirk IP, Leeson PD, Leff P, Lewis RJ, Martin BP, McGinnity DF, Mortimore MP, Paine SW, Pairaudeau G, Patel A, Rigby AJ, Riley RJ, Teobald BJ, Tomlinson W, Webborn PJ, Willis PA (2007) From ATP to AZD6140: the discovery of an orally active reversible P2Y12 receptor antagonist for the prevention of thrombosis. Bioorg Med Chem Lett 17:6013–6018

    Article  CAS  Google Scholar 

  24. Ye H, Chen C, Zhang HC, Haertlein B, Parry TJ, Damiano BP, Maryanoff BE (2008) Carba-nucleosides as potent antagonists of the adenosine 5′-diphosphate (ADP) purinergic receptor (P2Y12) on human platelets. Chem Med Chem 3:732–736

    Article  CAS  Google Scholar 

  25. Douglass JG, Patel RI, Yerxa BR, Shaver SR, Watson PS, Bednarski K, Plourde R, Redick CC, Brubaker K, Jones AC, Boyer JL (2008) Lipophilic modifications to dinucleoside polyphosphates and nucleotides that confer antagonist properties at the platelet P2Y12 receptor. J Med Chem 51:1007–1025

    Article  CAS  Google Scholar 

  26. Douglass JG, deCamp JB, Fulcher EH, Jones W, Mahanty S, Morgan A, Smirnov D, Boyer JL, Watson PS (2008) Adenosine analogues as inhibitors of P2Y12 receptor mediated platelet aggregation. Bioorg Med Chem Lett 18:2167–2171

    Article  CAS  Google Scholar 

  27. Kortum SW, Lachance RM, Schweitzer BA, Yalamanchili G, Rahman H, Ennis MD, Huff RM, TenBrink RE (2009) Thienopyrimidine-based P2Y12 platelet aggregation inhibitors. Bioorg Med Chem Lett 19:5919–5923

    Article  CAS  Google Scholar 

  28. Tu W, Fan J, Zhang H, Xu G, Liu Z, Qu J, Yang F, Zhang L, Luan T, Yuan J, Gong A, Feng J, Sun P, Dong Q (2014) Synthesis and biological evaluation of cyclopentyl-triazolol-pyrimidine (CPTP) based P2Y12 antagonists. Bioorg Med Chem Lett 24:141–146

    Article  CAS  Google Scholar 

  29. Zamecnik PC, Kim B, Gao MJ, Taylor G, Blackburn GM (1992) Analogues of diadenosine 5′,5′′′-P1, P4-tetraphosphate (Ap4A) as potential anti-platelet-aggregation agents. Proc Natl Acad Sci USA 89:2370–2373

    Article  CAS  Google Scholar 

  30. Chang H, Yanachkov IB, Dix EJ, Li YF, Barnard MR, Wright GE, Michelson AD, Frelinger AL 3rd (2012) Modified diadenosine tetraphosphates with dual specificity for P2Y1 and P2Y12 are potent antagonists of ADP-induced platelet activation. J Thromb Haemost 10:2573–2580

    Article  CAS  Google Scholar 

  31. Chang H, Yanachkov IB, Dix EJ, Yanachkova M, Li Y, Barnard MR, Wright GE, Michelson AD, Frelinger AL 3rd (2014) Antiplatelet activity, P2Y1 and P2Y12 inhibition, and metabolism in plasma of stereoisomers of diadenosine 5′,5′′′-P1, P4-dithio-P2, P3-chloromethylenetetraphosphate. PLoS ONE 9:e94780

    Article  Google Scholar 

  32. Husted S, van Giezen JJ (2009) Ticagrelor: the first reversibly binding oral P2Y12 receptor antagonist. Cardiovasc Ther 27:259–274

    Article  CAS  Google Scholar 

  33. Kauffenstein G, Hechler B, Cazenave JP, Gachet C (2004) Adenine triphosphate nucleotides are antagonists at the P2Y receptor. J Thromb Haemost 2:1980–1988

    Article  CAS  Google Scholar 

  34. Schmidt P, Ritscher L, Dong EN, Hermsdorf T, Cöster M, Wittkopf D, Meiler J, Schöneberg T (2013) Identification of determinants required for agonistic and inverse agonistic ligand properties at the ADP receptor P2Y12. Mol Pharmacol 83:256–266

    Article  CAS  Google Scholar 

  35. Chang H, Yanachkov IB, Michelson AD, Li Y, Barnard MR, Wright GE, Frelinger AL III (2010) Agonist and antagonist effects of diadenosine tetraphosphate, a platelet dense granule constituent, on platelet P2Y1, P2Y12 and P2X1 receptors. Thromb Res 125:159–165

    Article  CAS  Google Scholar 

  36. Deflorian F, Jacobson KA (2011) Comparison of three GPCR structural templates for modeling of the P2Y12 nucleotide receptor. J Comput Aided Mol Des 25:329–338

    Article  CAS  Google Scholar 

  37. Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509:119–122

    Article  CAS  Google Scholar 

  38. Zhang K, Zhang J, Gao ZG, Zhang D, Zhu L, Han GW, Moss SM, Paoletta S, Kiselev E, Lu W, Fenalti G, Zhang W, Müller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509:115–118

    Article  CAS  Google Scholar 

  39. Chhatriwala M, Ravi RG, Patel RI, Boyer JL, Jacobson KA, Harden TK (2004) Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by conformational constraint of an ADP analog. J Pharmacol Exp Ther 311:1038–1043

    Article  CAS  Google Scholar 

  40. Hoffmann K, Sixel U, Di Pasquale F, von Kügelgen I (2008) Involvement of basic amino acid residues in transmembrane regions 6 and 7 in agonist and antagonist recognition of the human platelet P2Y12-receptor. Biochem Pharmacol 76:1201–1213

    Article  CAS  Google Scholar 

  41. Ignatovica V, Megnis K, Lapins M, Schioth HB, Klovins J (2012) Identification and analysis of functionally important amino acids in human purinergic 12 receptor using a Saccharomyces cerevisiae expression system. FEBS J 279:180–191

    Article  CAS  Google Scholar 

  42. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  43. Boldron C, Besse A, Bordes MF, Tissandié S, Yvon X, Gau B, Badorc A, Rousseaux T, Barré G, Meneyrol J, Zech G, Nazare M, Fossey V, Pflieger AM, Bonnet-Lignon S, Millet L, Briot C, Dol F, Hérault JP, Savi P, Lassalle G, Delesque N, Herbert JM, Bono F (2014) N-[6-(4-Butanoyl-5-methyl-1H-pyrazol-1-yl)pyridazin-3-yl]-5-chloro-1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-1H-indole-3-carboxamide (SAR216471), a Novel Intravenous and Oral, Reversible, and Directly Acting P2Y12 Antagonist. J Med Chem 57:7293–7316

    Article  CAS  Google Scholar 

  44. Hoffmann K, Baqi Y, Morena MS, Glänzel M, Müller CE, von Kügelgen I (2009) Interaction of new, very potent non-nucleotide antagonists with Arg256 of the human platelet P2Y12 receptor. J Pharmacol Exp Ther 331:648–655

    Article  CAS  Google Scholar 

  45. Hoffmann K, Lutz DA, Straßburger J, Baqi Y, Müller CE, von Kügelgen I (2014) Competitive mode and site of interaction of ticagrelor at the human platelet P2Y12-receptor. J Thromb Haemost 12:1898–1905

    Article  CAS  Google Scholar 

  46. Jacobson KA, Paoletta S, Katritch V, Wu B, Zhao Q, Stevens RC, Kiselev E (2015) Nucleotides acting at P2Y receptors: connecting structure and function. Mol Pharmacol 88:220–230

    Article  CAS  Google Scholar 

  47. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553

    Article  CAS  Google Scholar 

  48. Sabbadin D, Moro S (2014) Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale. J Comp Inf Mod 54:372–376

    Article  CAS  Google Scholar 

  49. Sabbadin D, Ciancetta A, Moro S (2014) Perturbation of fluid dynamics properties of water molecules during G protein-coupled receptor-ligand recognition: the human A2A adenosine receptor as a key study. J Chem Inf Model 54:2846–2855

    Article  CAS  Google Scholar 

  50. Carugo O (2014) Buried chloride stereochemistry in the protein data bank. BMC Struct Biol 14:19

    Article  Google Scholar 

  51. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  52. Suite Schrödinger (2014) Schrödinger. LLC, New York, NY

    Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–28

    Google Scholar 

  54. Seeber M, Felline A, Raimondi F, Muff S, Friedman R, Rao F, Caflisch A, Fanelli F (2011) Wordom: a user-friendly program for the analysis of molecular structures, trajectories, and free energy surfaces. J Comput Chem 32:1183–1194

    Article  CAS  Google Scholar 

  55. MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265

    Article  CAS  Google Scholar 

  56. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  57. Post JM, Alexander S, Wang YX, Vincelette J, Vergona R, Kent L, Bryant J, Sullivan ME, Dole WP, Morser J, Subramanyam B (2008) Novel P2Y12 adenosine diphosphate receptor antagonists for inhibition of platelet aggregation (II): pharmacodynamic and pharmacokinetic characterization. Thromb Res 122:533–540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (Intramural Research Program of the NIDDK and R01HL077707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paoletta, S., Sabbadin, D., von Kügelgen, I. et al. Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J Comput Aided Mol Des 29, 737–756 (2015). https://doi.org/10.1007/s10822-015-9858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9858-z

Keywords

Navigation