[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

An SH2 domain model of STAT5 in complex with phospho-peptides define “STAT5 Binding Signatures”

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of proteins, implicated in cell growth and differentiation. STAT activation is regulated by phosphorylation of protein monomers at conserved tyrosine residues, followed by binding to phospho-peptide pockets and subsequent dimerization. STAT5 is implicated in the development of severe pathological conditions, including many cancer forms. However, nowadays a few STAT5 inhibitors are known, and only one crystal structure of the inactive STAT5 dimer is publicly available. With a view to enabling structure-based drug design, we have: (1) analyzed phospho-peptide binding pockets on SH2 domains of STAT5, STAT1 and STAT3; (2) generated a model of STAT5 bound to phospho-peptides; (3) assessed our model by docking against a class of known STAT5 inhibitors (Müller et al. in ChemBioChem 9:723–727, 2008); (4) used molecular dynamics simulations to optimize the molecular determinants responsible for binding and (5) proposed unique “Binding Signatures” of STAT5. Our results put in place the foundations to address STAT5 as a target for rational drug design, from sequence, structural and functional perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BLAST:

Basic local alignment search tool

FP:

Fluorescence polarization

IC50 :

Half maximal inhibitory concentration

MD:

Molecular dynamics

MM-GBSA:

Molecular mechanics-generalized born surface area

MSA:

Multiple sequence alignment

pY:

Tyrosine-phosphorylated

RMSD:

Root mean square deviation

SH2:

Src homology 2

STAT:

Signal transducer and activator of transcription

References

  1. Kisseleva T, Bhattacharya S, Braunstein J, Schnidler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24

    Article  CAS  Google Scholar 

  2. Grimley PM, Dong F, Rui H (1999) Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytochine Growth Factor Rev 10:131–157

    Article  CAS  Google Scholar 

  3. Gao Q, Hua J, Kimura R, Headd JJ, Fu X-Y, Chin Y-E (2004) Identification of the Linker-SH2 domain of STAT as the origin of the SH2 domain using two-dimensional structure alignment. Mol Cell Proteomics 3:704–714

    Article  CAS  Google Scholar 

  4. Pawson T, Gish GD, Nash P (2001) SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 11:504–511

    Article  CAS  Google Scholar 

  5. Boucheron C, Dumon S, Santos SC, Moriggi R, Hennighausen L, Gisselbrecht S, Gouilleux F (1998) A single amino acid in the DNA binding regions of STAT5A and STAT5B confers distinct DNA binding specificities. J Biol Chem 273:33936–33941

    Article  CAS  Google Scholar 

  6. Nevalainen MT, Valve EM, Ingleton PM, Nurmi M, Martikainen PM, Harkonen PL (1997) Prolactin and prolactin receptors are expressed and functioning in human prostate. J Clin Invest 99:618–627

    Article  CAS  Google Scholar 

  7. Ahonen TJ, Xie J, LeBaron MJ, Zhu J, Nurmi M, Alanen K, Rui H, Nevalainen MT (2003) Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem 278:27287–27292

    Article  CAS  Google Scholar 

  8. Li H, Ahonen TJ, Alanen K, Xie J, LeBaron MJ, Pretlow TJ, Elley EL, Zhang Y, Nurmi M, Singh B, Martikainen PM, Nevalainen MT (2004) Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res 64:4774–4782

    Article  CAS  Google Scholar 

  9. Malin S, McManus S, Busslinger M (2010) STAT5 in B cell development and leukemia. Curr Opin Immunol 22:168–176

    Article  CAS  Google Scholar 

  10. Llovera M, Pichard C, Bernichtein S, Jeay S, Touraine P, Kelly PA, Goffin V (2000) Human prolactin (hPRL) antagonists inhibit hPRL-activated signaling pathways involved in breast cancer cell proliferation. Oncogene 19:4695–4705

    Article  CAS  Google Scholar 

  11. Xu X, Kreye E, Kuo CB, Walker AM (2001) A molecular mimic of phosphorylated prolactin markedly reduced tumor incidence and size when DU145 human prostate cancer cells were grown in nude mice. Cancer Res 61:6098–6104

    CAS  Google Scholar 

  12. Luo C, Laaja P (2004) Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov Today 9:268–275

    Article  CAS  Google Scholar 

  13. Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner R, Proia D, Kowolik CM, Xin H, Armstrong B, Bebernitz G, Weng S, Wang L, Ye M, McEachern K, Chen H, Morosini D, Bell K, Alimzhanov M, Ioannidis S, McCoon P, Cao ZA, Yu H, Jove R, Zinda M (2009) The JAK inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    Article  CAS  Google Scholar 

  14. Liao Z, Nevalainen MT (2001) Targeting transcription factor Stat5a/b as a therapeutic strategy for prostate cancer. Am J Transl Res 3:133–138

    Google Scholar 

  15. Deng J, Grande F, Neamati N (2007) Small molecule inhibitors of Stat3 signaling pathway. Curr Cancer Drug Targets 7:91–107

    Article  CAS  Google Scholar 

  16. Chiba Y, Todoroki M, Nishida Y, Tanabe M, Misawa M (2009) A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice. Am J Respir Cell Mol Biol 41:516–524

    Article  CAS  Google Scholar 

  17. Zhao M, Jiang B, Gao FH (2011) Small molecule inhibitors of STAT3 for cancer therapy. Curr Med Chem 26:4012–4018

    Article  Google Scholar 

  18. Dave B, Landis MD, Tweardy DJ, Chang JC, Dobrolecki LE, Wu MF, Zhang X, Westbrook TF, Hilsenbeck SG, Liu D, Lewis MT (2012) Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PLoS ONE 7(8):e30207

    Article  CAS  Google Scholar 

  19. Müller J, Sperl B, Reindl W, Kiessling A, Berg T (2008) Discovery of chromone-based inhibitors of the transcription factor STAT5. ChemBioChem 9:723–727

    Article  Google Scholar 

  20. Page BD, Khoury H, Laister RC, Fletcher S, Vellozo M, Manzoli A, Yue P, Turkson J, Minden MD, Gunning PT (2012) Small molecule STAT5-SH2 domain inhibitors exhibit potent antileukemia activity. J Med Chem 55:1047–1055

    Article  CAS  Google Scholar 

  21. RCSB PDB, The Research Collaboratory for Structural Bioinformatics Protein Data Bank; http://www.rcsb.org/pdb. Accessed June 1, 2014

  22. Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, Becker S (2005) Structure of the unphosphorylated STAT5a dimer. J Bol Chem 280:40782–40787

    Article  CAS  Google Scholar 

  23. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93:827–839

    Article  CAS  Google Scholar 

  24. Becker S, Groner B, Müller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394:145–151

    Article  CAS  Google Scholar 

  25. Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell JE, Chen X (2005) Structural bases of unphosphorylated STAT1 association and receptor binding. Cell 17:761–771

    CAS  Google Scholar 

  26. Ren Z, Mao X, Mertens C, Krishnaraj R, Qin J, Mandal PK, Romanowski MJ, McMurray JS, Chen X (2008) Crystal structure of unphosphorylated STAT3 core fragment. Biochem Biophys Res Commun 374:1–5

    Article  CAS  Google Scholar 

  27. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19:6613–6626

    Article  CAS  Google Scholar 

  28. Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139–1142

    Article  CAS  Google Scholar 

  29. Ebner FH, Meriotto S, Darra E, Suzuki H, Cavalieri E (2011) Use of STAT1 inhibitors in the treatment of brain I/R injury and neurogenerative diseases. Cent Nerv Syst Agents Med Chem 11:2–7

    Article  CAS  Google Scholar 

  30. Rognan D (2007) Chemogenomic approaches to rational drug design. Br J Pharmacol 152:38–52

    Article  CAS  Google Scholar 

  31. Waksman G, Kominos D, Robertson SC, Pant N, Baltimore D, Birge RB, Cowburn D, Hanafusa H, Mayer BJ, Overduin M, Resh MD, Rios CB, Silverman L, Kuriyan J (1992) Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature 358:646–653

    Article  CAS  Google Scholar 

  32. Sheinerman FB, Al-Lazikani B, Honig B (2003) Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. J Mol Biol 334:823–841

    Article  CAS  Google Scholar 

  33. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD (2006) The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol Cell 22:851–868

    Article  Google Scholar 

  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  35. NCBI, National Center for Biotechnology Information, U.S. National Library of Medicine 8600 Rockville Pike, Bethesda MD, 20894 USA; http://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed Mar 13, 2013

  36. Apweiler R, Jesus Martin M, O’onovan C, Magrane M, Alam-Faruque Y, Antunes R, Barrera Casanova E, Bely B, Bingley M, Bower L, Bursteinas B, Mun Chan W, Chavali G, Da Silva A, Dimmer E, Eberhardt R, Fazzini F, Fedotov A. Garavelli J, Castro LG et al. The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40: D71–D75. Accessed March 13, 2013

  37. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Leichleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley L (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  CAS  Google Scholar 

  38. Songyang Z, Cantley L (1995) Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem Sci 20:470–475

    Article  CAS  Google Scholar 

  39. Campbell SJ, Jackson RM (2003) Diversity in the SH2 domain family phosphotyrosil peptide binding site. Protein Eng 16:217–227

    Article  CAS  Google Scholar 

  40. Prime, version 3.1, Schrödinger, LLC, New York, NY, 2012; Prime, version 3.0, Schrödinger, LLC, New York, NY, 2011; Suite 2011: Prime, version 2.2, Schrödinger, LLC, New York, NY, 2010; Suite 2009: Prime, version 2.1, Schrödinger, LLC, New York, NY, 2009

  41. Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of crystal packing forces in determining protein sidechain conformations. J Mol Biol 320:597–608

    Article  CAS  Google Scholar 

  42. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367

    Article  CAS  Google Scholar 

  43. Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71:359–362

    Article  CAS  Google Scholar 

  44. McGovern SL, Shoichet B (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46:2895–2907

    Article  CAS  Google Scholar 

  45. Glide, version 5.8, Schrödinger, LLC, New York, NY, 2012

  46. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelly M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  Google Scholar 

  47. Halgren TA, Murphy RB, Friesner RA, Behard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  Google Scholar 

  48. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  Google Scholar 

  49. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the ras-raf and Ras-RalGDS complexes. J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  50. Desmond Molecular Dynamics System, version 3.1, D. E. Shaw Research, New York, NY, 2012. Maestro-Desmond Interoperability Tools, version 3.1, Schrödinger, New York, NY, 2012

  51. Bowers KJ Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the ACM/IEEE conference on supercomputing (SC06), Tampa, Florida November:11–17

  52. Cohen MS, Zhang C, Shokat KM, Taunton J (2005) Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308:1318–1321

    Article  CAS  Google Scholar 

  53. Mazumder ED, Jardin C, Vogel B, Heck E, Scholz B, Lengenfelder D, Sticht H, Ensser A (2012) A molecular model for the differential activation of STAT3 and STAT6 by the herpesviral oncoprotein tip. PLoS ONE 7(4):e34306. doi:10.1371/journal.pone.0034306

  54. Suite 2010: Schrödinger Suite 2010 Protein Preparation Wizard; Epik version 2.1, Schrödinger, LLC, New York, NY, 2010; Impact, version 5.6, Schroödinger, LLC, New York, NY, 2005; Prime, version 2.2, Schroödinger, LLC, New York, NY, 2010

  55. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  56. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  57. Shivakumar D, Williams J, Wu J, Damn W, Shelly J, Sherman W (2010) Prediction of absolute free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    Article  CAS  Google Scholar 

  58. Discovery Studio Visualizer; Accelrys Software Inc., Discovery Studio Visualizer, Release 2008, San Diego: Accelrys Software Inc. (http://accelrys.com)

  59. ClustalW v. 2.0.12; http://www.clustal.org/clustal2/

  60. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  61. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  62. LigPrep, version 2.5, Schrödinger, LLC, New York, 2012

  63. Epik, version 2.2, Schrödinger, LLC, New York, 2012

  64. Ghosh A, Rapp CS, Friesner RA (1998) Generalized born model based on a surface integral formulation. J Phys Chem B 102:10983–10990

    Article  CAS  Google Scholar 

  65. Du J, Sun H, Xi L, Li J, Yang Y, Liu H, Yao X (2011) Molecular modeling study of checkpoint kinase 1 inhibitors by molecular docking strategies and Prime/MM-GBSA calculation. J Comput Chem 32:2800–2809

    Article  CAS  Google Scholar 

  66. Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49:4805–4808

    Article  CAS  Google Scholar 

  67. Pearlman DA (2005) Evaluating the molecular mechanics Poisson-Boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. J Med Chem 49:7796–7807

    Article  Google Scholar 

  68. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins 79:27942812

    Google Scholar 

  69. Maestro, version 9.3, Schrödinger, LLC, New York, 2012

  70. Toukan K, Rahman A (1985) Molecular-dynamics study of atomic motions in water. Phys Rev B 31:2643–2648

    Article  CAS  Google Scholar 

  71. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  72. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph Model 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Vojislava Pophristic, Dr. Preston B. Moore and Dr. Elia Eschenazi for their help in useful discussions. Supercomputing time allocated to the project was generously provided (P. Kollman graduate student award) by the American Chemical Society (ACS) COMP division and the National Institute for Computational Sciences (NICS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleonora Gianti or Randy J. Zauhar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 1830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianti, E., Zauhar, R.J. An SH2 domain model of STAT5 in complex with phospho-peptides define “STAT5 Binding Signatures”. J Comput Aided Mol Des 29, 451–470 (2015). https://doi.org/10.1007/s10822-015-9835-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9835-6

Keywords

Navigation