[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

All-atom molecular dynamics computer simulations were used to blindly predict the hydration free energies of a range of small molecules as part of the SAMPL4 challenge. Compounds were parametrized on the basis of the OPLS-AA force field using three different protocols for deriving partial charges: (1) using existing OPLS-AA atom types and charges with minor adjustments of partial charges on equivalent connecting atoms and derivation of new parameters for a number of distinct chemical groups (N-alkyl imidazole, nitrate) that were not present in the published force field; (2) calculation of quantum mechanical charges via geometry optimization, followed by electrostatic potential (ESP) fitting, using Jaguar at the LMP2/cc-pVTZ(-F) level; and (3) via geometry optimization and CHelpG charges (Gaussian09 at the HF/6-31G* level), followed by two-stage RESP fitting. The absolute hydration free energy was computed by an established protocol including alchemical free energy perturbation with thermodynamic integration. The use of standard OPLS-AA charges (protocol 1) with a number of newly parametrized charges and the use of histidine derived parameters for imidazole yielded an overall root mean square deviation of the prediction from the experimental data of 1.75 kcal/mol. The precision of our results appears to be mainly limited by relatively poor reproducibility of the Lennard-Jones contribution towards the solvation free energy, for which we observed large variability that could be traced to a strong dependence on the initial system conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51(4):769–779. doi:10.1021/jm070549+

    Article  CAS  Google Scholar 

  2. Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113(14):4501–4507. doi:10.1021/jp806724u

    Article  CAS  Google Scholar 

  3. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24(4):259–279. doi:10.1007/s10822-010-9350-8

    Article  CAS  Google Scholar 

  4. Geballe MT, Guthrie JP (2012) The SAMPL3 blind prediction challenge: transfer energy overview. J Comput Aided Mol Des 26(5):489–96. doi:10.1007/s10822-012-9568-8

    Article  CAS  Google Scholar 

  5. Mackerell AD (2004) Empirical force fields for biological macromolecules: overview and issues. J Comp Chem 25(13):1584–1604. doi:10.1002/jcc.20082

    Article  CAS  Google Scholar 

  6. Jorgensen WL, Tirado-Rives J (2005) Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA 102(19):6665–6670. doi:10.1073/pnas.0408037102

    Article  CAS  Google Scholar 

  7. van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glattli A, Hunenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45(25):4064–4092. doi:10.1002/anie.200502655

    Article  CAS  Google Scholar 

  8. Helms V, Wade R (1997) Free energies of hydration from thermodynamic integration: comparison of molecular mechanics force fields and evaluation of calculation accuracy. J Comput Chem 18(4):449–462. doi:10.1002/(SICI)1096-987X(199703)18:4<449::AID-JCC1>3.0.CO;2-T

    Article  CAS  Google Scholar 

  9. Geerke DP, van Gunsteren WF (2006) Force field evaluation for biomolecular simulation: free enthalpies of solvation of polar and apolar compounds in various solvents. ChemPhysChem 7(3):671–678. doi:10.1002/cphc.200500510

    Article  CAS  Google Scholar 

  10. Mobley DL, Wymer K, Lim NM (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des. doi:10.1007/s1082201497182

  11. Shirts MR, Pande VS (2005) Solvation free energies of amino acid side chain analogs for common molecular mechanics water models. J Chem Phys 122(13):134508. doi:10.1063/1.1877132

    Article  CAS  Google Scholar 

  12. Mobley DL, Dumont E, Chodera JD, Dill KA (2007) Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. J Phys Chem B 111(9):2242–2254. doi:10.1021/jp0667442

    Article  CAS  Google Scholar 

  13. Mobley DL, Bayly CI, Cooper MD, Dill KA (2009) Predictions of hydration free energies from all-atom molecular dynamics simulations. J Phys Chem B 113(14):4533–4537. doi:10.1021/jp806838b

    Article  CAS  Google Scholar 

  14. Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA (2009) Small molecule hydration free energies in explicit solvent: an extensive test of fixed-charge atomistic simulations. J Chem Theory Comput 5(2):350–358. doi:10.1021/ct800409d

    Article  CAS  Google Scholar 

  15. Klimovich PV, Mobley DL (2010) Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. J Comput Aided Mol Des 24(4):307–316. doi:10.1007/s10822-010-9343-7

    Article  CAS  Google Scholar 

  16. Sulea T, Corbeil C, Purisima E (2010) Rapid prediction of solvation free energy. 1. An extensive test of linear interaction energy (LIE). J Chem Theory Comput 6(5):1608–1621. doi:10.1021/ct9006025

    Article  CAS  Google Scholar 

  17. Purisima EO, Corbeil CR, Sulea T (2010) Rapid prediction of solvation free energy. 3. Application to the SAMPL2 challenge. J Comput Aided Mol Des 24(4):373–83. doi:10.1007/s10822-010-9341-9

    Article  CAS  Google Scholar 

  18. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6(5):1509–1519. doi:10.1021/ct900587b

    Article  CAS  Google Scholar 

  19. Baker C, Lopes P, Zhu X, Roux B, MacKerell A Jr (2010) Accurate calculation of hydration free energies using pair-specific Lennard-Jones parameters in the CHARMM Drude polarizable force field. J Chem Theory Comput 6(4):1181–1198. doi:10.1021/ct9005773

    Article  CAS  Google Scholar 

  20. Beckstein O, Iorga BI (2012) Prediction of hydration free energies for aliphatic and aromatic chloro derivatives using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 26(5):635–645. doi:10.1007/s10822-011-9527-9

    Article  CAS  Google Scholar 

  21. Guthrie JP (2014) SAMPL4, a blind challenge for computational solvation free energies: The compounds considered. J Comput Aided Mol Des (in press)

  22. Kaminski G, Duffy E, Matsui T, Jorgensen W (1994) Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J Phys Chem 98(49):13077–13082. doi:10.1021/j100100a043

    Article  CAS  Google Scholar 

  23. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  24. Damm W, Frontera A, Tirado-Rives J, Jorgensen W (1997) OPLS all-atom force field for carbohydrates. J Comput Chem 18(16):1955–1970. doi:10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L

    Article  CAS  Google Scholar 

  25. Jorgensen WL, McDonald NA (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J Mol Struct THEOCHEM 424(1–2):145–155. doi:10.1016/S0166-1280(97)00237-6

    Article  CAS  Google Scholar 

  26. McDonald NA, Jorgensen WL (1998) Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J Phys Chem B 102(41):8049–8059. doi:10.1021/jp981200o

    Article  CAS  Google Scholar 

  27. Rizzo RC, Jorgensen WL (1999) OPLS all-atom model for amines: resolution of the amine hydration problem. J Am Chem Soc 121(20):4827–4836. doi:10.1021/ja984106u

    Google Scholar 

  28. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487. doi:10.1021/jp003919d

    Article  CAS  Google Scholar 

  29. Watkins EK, Jorgensen WL (2001) Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J Phys Chem A 105(16):4118–4125. doi:10.1021/jp004071w

    Article  CAS  Google Scholar 

  30. Price M, Ostrovsky D, Jorgensen W (2001) Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. J Comput Chem 22(13):1340–1352. doi:10.1002/jcc.1092

    Article  CAS  Google Scholar 

  31. Kony D, Damm W, Stoll S, Van Gunsteren W (2002) An improved OPLS-AA force field for carbohydrates. J Comput Chem 23(15):1416–1429. doi:10.1002/jcc.10139

    Article  CAS  Google Scholar 

  32. Kahn K, Bruice T (2002) Parameterization of OPLS-AA force field for the conformational analysis of macrocyclic polyketides. J Comput Chem 23(10):977–996. doi:10.1002/jcc.10051

    Article  CAS  Google Scholar 

  33. Thomas L, Christakis T, Jorgensen W (2006) Conformation of alkanes in the gas phase and pure liquids. J Phys Chem B 110(42):21198–21204. doi:10.1021/jp064811m

    Article  CAS  Google Scholar 

  34. Jorgensen W, Jensen K, Alexandrova A (2007) Polarization effects for hydrogen-bonded complexes of substituted phenols with water and chloride ion. J Chem Theory Comput 3(6):1987–1992. doi:10.1021/ct7001754

    Article  CAS  Google Scholar 

  35. Xu Z, Luo HH, Tieleman DP (2007) Modifying the OPLS-AA force field to improve hydration free energies for several amino acid side chains using new atomic charges and an off-plane charge model for aromatic residues. J Comput Chem 28(3):689–697. doi:10.1002/jcc.20560

    Article  CAS  Google Scholar 

  36. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  37. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327. doi:10.1002/jcc.21787

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian~09 Revision D.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  40. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119(11):5740–5761. doi:10.1063/1.1587119

    Google Scholar 

  41. Essman U, Perela L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592. doi:10.1063/1.470117

    Article  Google Scholar 

  42. Hess B (2008) P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4(1):116–122. doi:10.1021/ct700200b

    Article  CAS  Google Scholar 

  43. Jorge M, Garrido N, Queimada A, Economou I, Macedo E (2010) Effect of the integration method on the accuracy and computational efficiency of free energy calculations using thermodynamic integration. J Chem Theory Comput 6(4):1018–1027. doi:10.1021/ct900661c

    Article  CAS  Google Scholar 

  44. Frenkel D, Smit B (2002) Understanding molecular simulations, 2nd edn. Academic Press, San Diego

    Google Scholar 

  45. Marenich AV, Kelly CP, Thompson JD, Hawkins GD, Chambers CC, Giesen DJ, Winget P, Cramer CJ, Truhlar DG (2009) Minnesota Solvation Database—version 2009, University of Minnesota, Minneapolis (http://comp.chem.umn.edu/mnsol/)

  46. Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503:295–299. doi:10.1038/nature12595

    CAS  Google Scholar 

Download references

Acknowledgments

B.I.I.’s laboratory is a member of the Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LERMIT) supported by a grant from French National Research Agency (ANR-10-LABX-33).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oliver Beckstein or Bogdan I. Iorga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (83 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckstein, O., Fourrier, A. & Iorga, B.I. Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 28, 265–276 (2014). https://doi.org/10.1007/s10822-014-9727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9727-1

Keywords

Navigation