[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Converging free energies of binding in cucurbit[7]uril and octa-acid host–guest systems from SAMPL4 using expanded ensemble simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Molecular containers such as cucurbit[7]uril (CB7) and the octa-acid (OA) host are ideal simplified model test systems for optimizing and analyzing methods for computing free energies of binding intended for use with biologically relevant protein–ligand complexes. To this end, we have performed initially blind free energy calculations to determine the free energies of binding for ligands of both the CB7 and OA hosts. A subset of the selected guest molecules were those included in the SAMPL4 prediction challenge. Using expanded ensemble simulations in the dimension of coupling host–guest intermolecular interactions, we are able to show that our estimates in most cases can be demonstrated to fully converge and that the errors in our estimates are due almost entirely to the assigned force field parameters and the choice of environmental conditions used to model experiment. We confirm the convergence through the use of alternative simulation methodologies and thermodynamic pathways, analyzing sampled conformations, and directly observing changes of the free energy with respect to simulation time. Our results demonstrate the benefits of enhanced sampling of multiple local free energy minima made possible by the use of expanded ensemble molecular dynamics and may indicate the presence of significant problems with current transferable force fields for organic molecules when used for calculating binding affinities, especially in non-protein chemistries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mobley DL, Dill KA (2007) Confine-and-release method: obtaining correct binding free energies in the presence of protein conformational change. J Chem Theory Comput 3:1231–1235

    Article  CAS  Google Scholar 

  2. Gallicchio E, Lapelosa M, Levy RM (2010) Binding energy distribution analysis method (BEDAM) for estimation of protein–ligand binding affinities. J Chem Theory Comput 6:2961–2977

    Article  CAS  Google Scholar 

  3. Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill Ka, Shoichet BK (2009) Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. J Mol Biol 394(4):747–63

    Article  CAS  Google Scholar 

  4. Jayachandran G, Shirts MR, Park S, Pande VS (2006) Parallelized-over-parts computation of absolute binding free energy with docking and molecular dynamics. J Chem Phys 125(8):084,901

    Article  Google Scholar 

  5. Isaacs L (2009) Cucurbit[n]urils: from mechanism to structure and function. Chem Commun (6):619–29

  6. Sun H, Gibb CLD, Gibb BC (2008) Calorimetric analysis of the 1:1 complexes formed between a water-soluble deep-cavity cavitand, and cyclic and acyclic carboxylic acids. Supramol Chem 20(1–2):141–147

    Article  CAS  Google Scholar 

  7. Ong W, Kaifer AE (2004) Salt effects on the apparent stability of the cucurbit[7]uril-methyl viologen inclusion complex. J Org Chem 69(4):1383–5

    Article  CAS  Google Scholar 

  8. Moghaddam S, Yang C, Rekharsky M, Ko YH, Kim K, Inoue Y, Gilson MK (2011) New ultrahigh affinity host–guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. J Am Chem Soc 133(10):3570–81

    Article  CAS  Google Scholar 

  9. Moghaddam S, Inoue Y, Gilson MK (2009) Host–guest complexes with protein–ligand-like affinities: computational analysis and design. J Am Chem Soc 131(11):4012–21

    Article  CAS  Google Scholar 

  10. Wyman IW, Macartney DH (2008) Cucurbit[7]uril host–guest complexes with small polar organic guests in aqueous solution. Org Biomol Chem 6(10):1796–801

    Article  CAS  Google Scholar 

  11. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) Blind prediction of the host–guest binding affinities from the SAMPL4 challenge. J Comput Aided Mol Des (in press)

  12. Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN (1992) New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys 96(3):1776

    Article  CAS  Google Scholar 

  13. Escobedo Fa, Martínez-Veracoechea FJ (2007) Optimized expanded ensembles for simulations involving molecular insertions and deletions. I. Closed systems. J Chem Phys 127(17):174103

    Article  Google Scholar 

  14. Desgranges C, Delhommelle J (2012) Evaluation of the grand-canonical partition function using expanded Wang–Landau simulations. I. Thermodynamic properties in the bulk and at the liquid-vapor phase boundary. J Chem Phys 136(18):184107

    Article  Google Scholar 

  15. Wang F, Landau D (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86(10):2050–2053

    Article  CAS  Google Scholar 

  16. Wang K, Yang Y, Chodera JD, Shirts MR (2013) Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics. J Comput Aid Mol Des 12(27):989–1007

    Article  Google Scholar 

  17. Mobley DL (2012) Let’s get honest about sampling. J Comput Aided Mol Des 26(1):93–5

    Article  CAS  Google Scholar 

  18. Flyvbjerg H, Petersen HG (1989) Error estimates on averages of correlated data. J Chem Phys 91(1):461

    Article  CAS  Google Scholar 

  19. Hess B (2002) Convergence of sampling in protein simulations. Phys Rev E 65(3):1–10

    Article  Google Scholar 

  20. Grossfield A, Zuckerman DM (2009) Quantifying uncertainty and sampling quality in biomolecular simulations. Ann Rep Comput Chem 5:23–48

    Article  CAS  Google Scholar 

  21. Belardinelli RE, Manzi S, Pereyra VD (2008) Analysis of the convergence of the 1/t and Wang–Landau algorithms in the calculation of multidimensional integrals. Phys Rev E 78:067701

    Article  CAS  Google Scholar 

  22. da Silva AWS, Vranken WF (2012) Acpype—antechamber python parser interface. BMC Res Notes 5:367

    Article  Google Scholar 

  23. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  25. Jakalian A, Jack DB, Bayly CI (2002) Fast, effcient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641

    Article  CAS  Google Scholar 

  26. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  27. Hess B, Kutzner C, Spoel DVD, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  28. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–54

    Article  CAS  Google Scholar 

  29. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  30. Cao L, Isaacs L (2013) Absolute and relative binding affinity of cucurbit[7]uril towards a series of cationic guests. Supramol Chem. doi:10.1080/10610278.2013.852674

  31. Liu DCL, Nocedal J (1989) On the limited memory method for large scale optimization. Math Program B 45(3):503–528

    Article  Google Scholar 

  32. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87:1117–1157

    Article  CAS  Google Scholar 

  33. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  34. Andersen C (1983) RATTLE: a “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J Comput Phys 52:24–34

    Article  CAS  Google Scholar 

  35. Chodera JD, Shirts MR (2011) Replica exchange and expanded ensemble simulations as Gibbs sampling: simple improvements for enhanced mixing. J Chem Phys 135(19):194110

    Article  Google Scholar 

  36. Paliwal H, Shirts MR (2011) A benchmark test set for alchemical free energy transformations and its use to quantify error in common free energy methods. J Chem Theory Comput 7(12):4115–4134

    Article  CAS  Google Scholar 

  37. Chodera JD, Shirts MR (2009) A python implementation of the multistate Bennet acceptance ratio (MBAR). https://simtk.org/home/pymbar

  38. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105

    Article  Google Scholar 

  39. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551

    Google Scholar 

  40. Deng Y, Roux B (2006) Calculation of standard binding free energies: aromatic molecules in the T4 lysozyme L99A mutant. J Chem Theory Comput 2(5):1255–1273

    Article  CAS  Google Scholar 

  41. Wang J, Deng Y, Roux B (2006) Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys J 91(8):2798–814

    Article  CAS  Google Scholar 

  42. Hunenberger PH, McCammon JA (1999) Ewald artifacts in computer simulations of ionic solvation and ionion interaction: a continuum electrostatics study. J Chem Phys 110(4):1856

    Article  CAS  Google Scholar 

  43. Rocklin GJ, Mobley DL, Dill Ka, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):184103

    Article  Google Scholar 

  44. Rogers KE, Ortiz-Sánchez JM, Baron R, Fajer M, de Oliveira CAF, McCammon JA (2013) On the role of dewetting transitions in host–guest binding free energy calculations. J Chem Theory Comput 9(1):46–53

    Article  CAS  Google Scholar 

  45. Yang W, Bitetti-Putzer R, Karplus M (2004) Free energy simulations: use of reverse cumulative averaging to determine the equilibrated region and the time required for convergence. J Chem Phys 120(6):2618–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the NanoSTAR Institute at the University of Virginia for an undergraduate research grant, David Mobley (UC-Irvine) for his patience and strong leadership in the SAMPL4 competition, OpenEye for sponsorship of the SAMPL4 competition, and Lyle Isaacs (University of Maryland-College Park) and Mike Gilson (UC-San Diego) for their work in preparing the host–guest systems for SAMPL4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Shirts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (1199 KB)

ZIP (652 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroe, J.I., Shirts, M.R. Converging free energies of binding in cucurbit[7]uril and octa-acid host–guest systems from SAMPL4 using expanded ensemble simulations. J Comput Aided Mol Des 28, 401–415 (2014). https://doi.org/10.1007/s10822-014-9716-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9716-4

Keywords

Navigation