[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Carboxylator: incorporating solvent-accessible surface area for identifying protein carboxylation sites

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites. However, experimental identification of carboxylation sites via mass spectrometry-based methods is observed to be expensive, time-consuming, and labor-intensive. Thus, we were motivated to design a computational method for identifying protein carboxylation sites. This work aims to investigate the protein carboxylation by considering the composition of amino acids that surround modification sites. With the implication of a modified residue prefers to be accessible on the surface of a protein, the solvent-accessible surface area (ASA) around carboxylation sites is also investigated. Radial basis function network is then employed to build a predictive model using various features for identifying carboxylation sites. Based on a five-fold cross-validation evaluation, a predictive model trained using the combined features of amino acid sequence (AA20D), amino acid composition, and ASA, yields the highest accuracy at 0.874. Furthermore, an independent test done involving data not included in the cross-validation process indicates that in silico identification is a feasible means of preliminary analysis. Additionally, the predictive method presented in this work is implemented as Carboxylator (http://csb.cse.yzu.edu.tw/Carboxylator/), a web-based tool for identifying carboxylated proteins with modification sites in order to help users in investigating γ-glutamyl carboxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vermeer C (1990) Biochem J 266:625

    CAS  Google Scholar 

  2. Knobloch JE, Suttie JW (1987) J Biol Chem 262:15334

    CAS  Google Scholar 

  3. King CR, Deych E, Milligan P, Eby C, Lenzini P, Grice G, Porche-Sorbet RM, Ridker PM, Gage BF (2010) Thromb Haemost 104:750

    Article  CAS  Google Scholar 

  4. Wang T, Yang J, Qiao J, Liu J, Guo X, Ye Z (2010) Urol Int 85:94

    Article  CAS  Google Scholar 

  5. Furie BC, Ratcliffe JV, Tward J, Jorgensen MJ, Blaszkowsky LS, DiMichele D, Furie B (1997) J Biol Chem 272:28258

    Article  CAS  Google Scholar 

  6. Price PA, Urist MR, Otawara Y (1983) Biochem Biophys Res Commun 117:765

    Article  CAS  Google Scholar 

  7. Bandyopadhyay PK, Garrett JE, Shetty RP, Keate T, Walker CS, Olivera BM (2002) Proc Natl Acad Sci USA 99:1264

    Article  CAS  Google Scholar 

  8. Kulman JD, Harris JE, Xie L, Davie EW (2001) Proc Natl Acad Sci USA 98:1370

    Article  CAS  Google Scholar 

  9. Price PA, Poser JW, Raman N (1976) Proc Natl Acad Sci USA 73:3374

    Article  CAS  Google Scholar 

  10. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Nature 386:78

    Article  CAS  Google Scholar 

  11. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Nature 382:448

    Article  CAS  Google Scholar 

  12. Berkner KL, Pudota BN (1998) Proc Natl Acad Sci USA 95:466

    Article  CAS  Google Scholar 

  13. Olson RE, Suttie JW (1977) Vitam Horm 35:59

    Article  CAS  Google Scholar 

  14. Morris DP, Stevens RD, Wright DJ, Stafford DW (1995) J Biol Chem 270:30491

    Article  CAS  Google Scholar 

  15. Pang CN, Hayen A, Wilkins MR (2007) J Proteome Res 6:1833

    Article  CAS  Google Scholar 

  16. Lee TY, Huang HD, Hung JH, Huang HY, Yang YS, Wang TH (2006) Nucleic Acids Res 34:D622

    Article  CAS  Google Scholar 

  17. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) Nucleic Acids Res 32:D115

    Article  CAS  Google Scholar 

  18. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, Gandhi TK, Chandrika KN, Deshpande N, Suresh S, Rashmi BP, Shanker K, Padma N, Niranjan V, Harsha HC, Talreja N, Vrushabendra BM, Ramya MA, Yatish AJ, Joy M, Shivashankar HN, Kavitha MP, Menezes M, Choudhury DR, Ghosh N, Saravana R, Chandran S, Mohan S, Jonnalagadda CK, Prasad CK, Kumar-Sinha C, Deshpande KS, Pandey A (2004) Nucleic Acids Res 32:D497

    Article  CAS  Google Scholar 

  19. Shien DM, Lee TY, Chang WC, Hsu JB, Horng JT, Hsu PC, Wang TY, Huang HD (2009) J Comput Chem 30:1532

    Article  CAS  Google Scholar 

  20. Lee TY, Hsu JB, Lin FM, Chang WC, Hsu PC, Huang HD (2010) J Comput Chem 31:2759

    Article  CAS  Google Scholar 

  21. Tatusova TA, Madden TL (1999) FEMS Microbiol Lett 174:247

    Article  CAS  Google Scholar 

  22. Ahmad S, Gromiha MM, Sarai A (2003) Bioinformatics 19:1849

    Article  CAS  Google Scholar 

  23. Ahmad S, Gromiha MM, Sarai A (2003) Proteins 50:629

    Article  CAS  Google Scholar 

  24. Yang ZR, Thomson R (2005) IEEE Trans Neural Netw 16:263

    Article  CAS  Google Scholar 

  25. Chen SA, Lee TY, Ou YY (2010) BMC Bioinformatics 11:536

    Article  Google Scholar 

  26. Lee TY, Chen SA, Hung HY, Ou YY (2011) PLoS One 6:e17331

    Article  CAS  Google Scholar 

  27. Chou KC, Shen HB (2007) Anal Biochem 370:1

    Article  CAS  Google Scholar 

  28. Pan LC, Price PA (1985) Proc Natl Acad Sci USA 82:6109

    Article  CAS  Google Scholar 

  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Bioinformatics 23:2947

    Article  CAS  Google Scholar 

  30. Kauferstein S, Kendel Y, Nicke A, Coronas FI, Possani LD, Favreau P, Krizaj I, Wunder C, Kauert G, Mebs D (2009) Toxicon 54:295

    Article  CAS  Google Scholar 

  31. Virdi AS, Willis AC, Hauschka PV, Triffitt JT (1991) Biochem Soc Trans 19:373S

    CAS  Google Scholar 

  32. Nielsen-Marsh CM, Richards MP, Hauschka PV, Thomas-Oates JE, Trinkaus E, Pettitt PB, Karavanic I, Poinar H, Collins MJ (2005) Proc Natl Acad Sci USA 102:4409

    Article  CAS  Google Scholar 

  33. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) Genome Res 14:1188

    Article  CAS  Google Scholar 

  34. Schneider TD, Stephens RM (1990) Nucleic Acids Res 18:6097

    Article  CAS  Google Scholar 

  35. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Nat Genet 25:25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely appreciate the National Science Council of the Republic of China for financially supporting this research under Contract Numbers of NSC 100-2221-E-155-079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Yi Lee.

Additional information

Availability: Carboxylator can be accessed via a web interface, and is freely available to all interested users at http://csb.cse.yzu.edu.tw/Carboxylator/. All of the data set that is used in this work is also available.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, CT., Chen, SA., Bretaña, N.A. et al. Carboxylator: incorporating solvent-accessible surface area for identifying protein carboxylation sites. J Comput Aided Mol Des 25, 987–995 (2011). https://doi.org/10.1007/s10822-011-9477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9477-2

Keywords

Navigation