Abstract
Design of irreversible inhibitors is an emerging and relatively less explored strategy for the design of protein kinase inhibitors. In this paper, we present a computational workflow that was specifically conceived to assist such design. The workflow takes the form of a multi-step procedure that includes: the creation of a database of already known reversible inhibitors of protein kinases, the selection of the most promising scaffolds that bind one or more desired kinase templates, the modification of the scaffolds by introduction of chemically reactive groups (suitable cysteine traps) and the final evaluation of the reversible and irreversible protein–ligand complexes with molecular dynamics simulations and binding free energy predictions. Most of these steps were automated. In order to prove that this is viable, the workflow was tested on a database of known inhibitors of ERK2, a protein kinase possessing a cysteine in the ATP site. The modeled ERK2-ligand complexes and the values of the estimated binding free energies of the putative ligands provide useful indicators of their aptitude to bind reversibly and irreversibly to the protein kinase. Moreover, the computational data are used to rank the ligands according to their computed binding free energies and their ability to bind specific protein residues in the reversible and irreversible complexes, thereby providing a useful decision-making tool for each step of the design. In this work we present the overall procedure and the first proof of concept results.
Similar content being viewed by others
References
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) Science (New York, N.Y) 298:1912–1934
Krause DS, Van Etten RA (2005) New Engl J Med 353:172–187
Liao JJ (2007) J Med Chem 50:409–424
Margutti S, Laufer SA (2007) Chem Med Chem 2:1116–1140
Bikker JA, Brooijmans N, Wissner A, Mansour TS (2009) J Med Chem 52:1493–1509
Ohori M, Kinoshita T, Yoshimura S, Warizaya M, Nakajima H, Miyake H (2007) Biochem Biophys Res Commun 353:633–637
Wissner A, Fraser HL, Ingalls CL, Dushin RG, Floyd MB, Cheung K, Nittoli T, Ravi MR, Tan X, Loganzo F (2007) Bioorg Med Chem 15:3635–3648
Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T, Zhao F, Vincent PW, Naumov GN, Bradner JE, Althaus IW, Gandhi L, Shapiro GI, Nelson JM, Heymach JV, Meyerson M, Wong KK, Janne PA (2007) Cancer Res 67:11924–11932
Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KC, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (2007) Chem Med Chem 2:58–61
Cohen MS, Zhang C, Shokat KM, Taunton J (2005) Science (New York, N.Y) 308:1318–1321
Potashman MH, Duggan ME (2009) J Med Chem 52:1232–1246
Robertson JG (2005) Biochemistry 44:5561–5571
Knight ZA, Shokat KM (2005) Chem Biol 12:621–637
Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, Harris PL, Driscoll DR, Fidias P, Lynch TJ, Rabindran SK, McGinnis JP, Wissner A, Sharma SV, Isselbacher KJ, Settleman J, Haber DA (2005) Proc Natl Acad Sci USA 102:7665–7670
Zhang JM, Yang PL, Gray NS (2009) Nat Rev Cancer 9:28–39
Schirmer A, Kennedy J, Murli S, Reid R, Santi DV (2006) Proc Natl Acad Sci USA 103:4234–4239
Rastelli G, Rosenfeld R, Reid R, Santi DV (2008) J Struct Biol 164:18–23
Ohori M, Kinoshita T, Okubo M, Sato K, Yamazaki A, Arakawa H, Nishimura S, Inamura N, Nakajima H, Neya M, Miyake H, Fujii T (2005) Biochem Biophys Res Commun 336:357–363
Blair JA, Rauh D, Kung C, Yun CH, Fan QW, Rode H, Zhang C, Eck MJ, Weiss WA, Shokat KM (2007) Nat Chem Biol 3:229–238
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612
Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26:1668–1688
Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Schafmeiste C, Ross WS, Kollman PA (2006) AMBER. University of California, San Francisco CA
Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Bioorg Med Chem 15:7865–7877
Rastelli G, Degliesposti G, Del Rio A, Sgobba M (2009) Chem Biol Drug Des 73:283–286
Rastelli G, Del Rio A, Degliesposti G, Sgobba M (2010) J Comput Chem 31:797–810
Stoica I, Sadiq SK, Coveney PV (2008) J Am Chem Soc 130:2639–2648
Kuhn B, Gerber P, Schulz-Gasch T, Stahl M (2005) J Med Chem 48:4040–4048
Del Rio A, Baldi BF, Rastelli G (2009) Chem Biol Drug Des 74:630–635
Brown SP, Muchmore SW (2007) J Chem Inf Model 47:1493–1503
Lyne PD, Lamb ML, Saeh JC (2006) J Med Chem 49:4805–4808
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Bioinformatics (Oxford, England) 25:1189–1191
Katayama N, Orita M, Yamaguchi T, Hisamichi H, Kuromitsu S, Kurihara H, Sakashita H, Matsumoto Y, Fujita S, Niimi T (2008) Proteins 73:795–801
Kinoshita T, Warizaya M, Ohori M, Sato K, Neya M, Fujii T (2006) Bioorg Med Chem Lett 16:55–58
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174
Acknowledgments
This work was supported by grants from AIRC, the Italian Association for Cancer Research (Research grant “Novel irreversible protein kinase inhibitors targeting a conserved active site cysteine”).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Del Rio, A., Sgobba, M., Parenti, M.D. et al. A computational workflow for the design of irreversible inhibitors of protein kinases. J Comput Aided Mol Des 24, 183–194 (2010). https://doi.org/10.1007/s10822-010-9324-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-010-9324-x