[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Modeling dimerizations of transmembrane proteins using Brownian dynamics simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The dimerizations of membrane proteins, Outer Membrane Phospholipase A (OMPLA) and glycophorin A (GPA), have been simulated by an adapted Brownian Dynamics program. To mimic the membrane protein environment, we introduced a hybrid electrostatic potential map of membrane and water for electrostatic interaction calculations. We added a van der Waals potential term to the force field of the current version of the BD program to simulate the short-range interactions of the two monomers. We reduced the BD sampling space from three dimensions to two dimensions to improve the efficiency of BD simulations for membrane proteins. The OMPLA and GPA dimers predicted by our 2D-BD simulation and structural refinement is in good agreement with the experimental structures. The adapted 2D-BD method could be used for prediction of dimerization of other membrane proteins, such as G protein-coupled receptors, to help better understanding of the structures and functions of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heldin CH (1995) Cell 80(2):213

    Article  CAS  Google Scholar 

  2. Rios CD, Jordan BA, Gomes I, Devi LA (2001) Pharmacol Ther 92(2–3):71

    Article  CAS  Google Scholar 

  3. Milligan G (2001) J Cell Sci 114(Pt 7):265

    Google Scholar 

  4. Angers S, Salahpour A, Bouvier M (2002) Annu Rev Pharmacol Toxicol 42:409

    Article  CAS  Google Scholar 

  5. Bouvier M (2001) Nat Rev Neurosci 2(4):274

    Article  CAS  Google Scholar 

  6. George SR, O’Dowd BF, Lee SP (2002) Nat Rev Drug Discov 1(10):808

    Article  CAS  Google Scholar 

  7. Breitwieser GE (2004) Circ Res 94(1):17

    Article  CAS  Google Scholar 

  8. Milligan G (2006) Drug Discov Today 11(11–12):541

    Article  CAS  Google Scholar 

  9. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Proc Natl Acad Sci USA 97(7):3684

    Article  CAS  Google Scholar 

  10. Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, Beck-Sickinger AG (2003) J Biol Chem 278(12):10562

    Article  CAS  Google Scholar 

  11. McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G (2001) J Biol Chem 276(17):14092

    CAS  Google Scholar 

  12. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Nature 421(6919):127

    Article  CAS  Google Scholar 

  13. Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) J Biol Chem 278(24):21655

    Article  CAS  Google Scholar 

  14. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) FEBS Lett 564(3):281

    Article  CAS  Google Scholar 

  15. Cheng ZJ, Miller LJ (2001) J Biol Chem 276(51):48040

    CAS  Google Scholar 

  16. Kota P, Reeves PJ, Rajbhandary UL, Khorana HG (2006) Proc Natl Acad Sci USA 103(9):3054

    Article  CAS  Google Scholar 

  17. Davies A, Schertler GF, Gowen BE, Saibil HR (1996) J Struct Biol 117(1):36

    Article  CAS  Google Scholar 

  18. Schertler GF, Hargrave PA (1995) Proc Natl Acad Sci USA 92(25):11578

    Article  CAS  Google Scholar 

  19. Davies A, Gowen BE, Krebs AM, Schertler GF, Saibil HR (2001) J Mol Biol 314(3):455

    Article  CAS  Google Scholar 

  20. Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Proc Natl Acad Sci USA 102(48):17495

    Article  CAS  Google Scholar 

  21. Filizola M, Weinstein H (2005) Febs J 272(12):2926

    Article  CAS  Google Scholar 

  22. Filizola M, Weinstein H (2002) Biopolymers 66(5):317

    Article  CAS  Google Scholar 

  23. Filizola M, Olmea O, Weinstein H (2002) Protein Eng 15(11):881

    Article  CAS  Google Scholar 

  24. Smith GR, Sternberg MJ (2002) Curr Opin Struct Biol 12(1):28

    Article  Google Scholar 

  25. Ouporov IV, Knull HR, Thomasson KA (1999) Biophys J 76(1 Pt 1):17

    CAS  Google Scholar 

  26. Pearson DC Jr, Gross EL (1998) Biophys J 75(6):2698

    CAS  Google Scholar 

  27. Lowe SL, Adrian C, Ouporov IV, Waingeh VF, Thomasson KA (2003) Biopolymers 70(4):456

    Article  CAS  Google Scholar 

  28. Cui M, Shen J, Briggs JM, Luo X, Tan X, Jiang H, Chen K, Ji R (2001) Biophys J 80(4):1659

    CAS  Google Scholar 

  29. Cui M, Shen J, Briggs JM, Fu W, Wu J, Zhang Y, Luo X, Chi Z, Ji R, Jiang H, Chen K (2002) J Mol Biol 318(2):417

    Article  CAS  Google Scholar 

  30. Fu W, Cui M, Briggs JM, Huang X, Xiong B, Zhang Y, Luo X, Shen J, Ji R, Jiang H, Chen K (2002) Biophys J 83(5):2370

    Article  CAS  Google Scholar 

  31. Huang X, Liu H, Cui M, Fu W, Yu K, Chen K, Luo X, Shen J, Jiang H (2004) Curr Pharm Des 10(9):1057

    Article  CAS  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235

    Article  CAS  Google Scholar 

  33. Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM, Egmond MR, Dekker N, Dijkstra BW (1999) Nature 401(6754):717

    Article  CAS  Google Scholar 

  34. Fiser A, Sali A (2003) Bioinformatics 19(18):2500

    Article  CAS  Google Scholar 

  35. Fiser A, Do RK, Sali A (2000) Protein Sci 9(9):1753

    CAS  Google Scholar 

  36. MacKenzie KR, Prestegard JH, Engelman DM (1997) Science 276(5309):131

    Article  CAS  Google Scholar 

  37. Northrup SH, Laughner T, Stevenson G (1999) MacroDox macromolecular simulation program. Tennessee Technological University, Department of Chemistry, Cookeville, TN

    Google Scholar 

  38. Northrup SH, Boles JO, Reynolds JCL (1987) J Phys Chem 91:5991

    Article  CAS  Google Scholar 

  39. Northrup SH, Thomasson KA, Miller CM, Barker PD, Eltis LD, Guillemette JG, Inglis SC, Mauk AG (1993) Biochemistry 32(26):6613

    Article  CAS  Google Scholar 

  40. Smoluchowski MV (1917) Z Phys Chem 92:129

    Google Scholar 

  41. Ermak DL, McCammon JA (1978) J Chem Phys 69:1352

    Article  CAS  Google Scholar 

  42. Warwicker J, Watson HC (1982) J Mol Biol 157(4):671

    Article  CAS  Google Scholar 

  43. Gabdoulline RR, Wade RC (1998) Methods 14(3):329

    Article  CAS  Google Scholar 

  44. Nelder JA, Mead R (1965) Comput J 7:308

    Google Scholar 

  45. Landolt-Marticorena C, Williams KA, Deber CM, Reithmeier RA (1993) J Mol Biol 229(3):602

    Article  CAS  Google Scholar 

  46. Arkin IT, Brunger AT (1998) Biochim Biophys Acta 1429(1):113

    CAS  Google Scholar 

  47. Killian JA, von Heijne G (2000) Trends Biochem Sci 25(9):429

    Article  CAS  Google Scholar 

  48. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor S. H. Northrup for his permission to adapt the MacroDox3.2.2 Program, and for his helpful discussions. We gratefully acknowledge financial support from National Institute Health Grant DC007721 (M.C.), and DC006696 (Marianna Max). The computations were made possible by grants of the National Center for Supercomputing Applications under MCB060020P and MCB070095T (MC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Cui or Roman Osman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, M., Mezei, M. & Osman, R. Modeling dimerizations of transmembrane proteins using Brownian dynamics simulations. J Comput Aided Mol Des 22, 553–561 (2008). https://doi.org/10.1007/s10822-008-9198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9198-3

Keywords

Navigation