Abstract
The dimerizations of membrane proteins, Outer Membrane Phospholipase A (OMPLA) and glycophorin A (GPA), have been simulated by an adapted Brownian Dynamics program. To mimic the membrane protein environment, we introduced a hybrid electrostatic potential map of membrane and water for electrostatic interaction calculations. We added a van der Waals potential term to the force field of the current version of the BD program to simulate the short-range interactions of the two monomers. We reduced the BD sampling space from three dimensions to two dimensions to improve the efficiency of BD simulations for membrane proteins. The OMPLA and GPA dimers predicted by our 2D-BD simulation and structural refinement is in good agreement with the experimental structures. The adapted 2D-BD method could be used for prediction of dimerization of other membrane proteins, such as G protein-coupled receptors, to help better understanding of the structures and functions of membrane proteins.
Similar content being viewed by others
References
Heldin CH (1995) Cell 80(2):213
Rios CD, Jordan BA, Gomes I, Devi LA (2001) Pharmacol Ther 92(2–3):71
Milligan G (2001) J Cell Sci 114(Pt 7):265
Angers S, Salahpour A, Bouvier M (2002) Annu Rev Pharmacol Toxicol 42:409
Bouvier M (2001) Nat Rev Neurosci 2(4):274
George SR, O’Dowd BF, Lee SP (2002) Nat Rev Drug Discov 1(10):808
Breitwieser GE (2004) Circ Res 94(1):17
Milligan G (2006) Drug Discov Today 11(11–12):541
Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Proc Natl Acad Sci USA 97(7):3684
Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, Beck-Sickinger AG (2003) J Biol Chem 278(12):10562
McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G (2001) J Biol Chem 276(17):14092
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Nature 421(6919):127
Liang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A (2003) J Biol Chem 278(24):21655
Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2004) FEBS Lett 564(3):281
Cheng ZJ, Miller LJ (2001) J Biol Chem 276(51):48040
Kota P, Reeves PJ, Rajbhandary UL, Khorana HG (2006) Proc Natl Acad Sci USA 103(9):3054
Davies A, Schertler GF, Gowen BE, Saibil HR (1996) J Struct Biol 117(1):36
Schertler GF, Hargrave PA (1995) Proc Natl Acad Sci USA 92(25):11578
Davies A, Gowen BE, Krebs AM, Schertler GF, Saibil HR (2001) J Mol Biol 314(3):455
Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Proc Natl Acad Sci USA 102(48):17495
Filizola M, Weinstein H (2005) Febs J 272(12):2926
Filizola M, Weinstein H (2002) Biopolymers 66(5):317
Filizola M, Olmea O, Weinstein H (2002) Protein Eng 15(11):881
Smith GR, Sternberg MJ (2002) Curr Opin Struct Biol 12(1):28
Ouporov IV, Knull HR, Thomasson KA (1999) Biophys J 76(1 Pt 1):17
Pearson DC Jr, Gross EL (1998) Biophys J 75(6):2698
Lowe SL, Adrian C, Ouporov IV, Waingeh VF, Thomasson KA (2003) Biopolymers 70(4):456
Cui M, Shen J, Briggs JM, Luo X, Tan X, Jiang H, Chen K, Ji R (2001) Biophys J 80(4):1659
Cui M, Shen J, Briggs JM, Fu W, Wu J, Zhang Y, Luo X, Chi Z, Ji R, Jiang H, Chen K (2002) J Mol Biol 318(2):417
Fu W, Cui M, Briggs JM, Huang X, Xiong B, Zhang Y, Luo X, Shen J, Ji R, Jiang H, Chen K (2002) Biophys J 83(5):2370
Huang X, Liu H, Cui M, Fu W, Yu K, Chen K, Luo X, Shen J, Jiang H (2004) Curr Pharm Des 10(9):1057
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235
Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM, Egmond MR, Dekker N, Dijkstra BW (1999) Nature 401(6754):717
Fiser A, Sali A (2003) Bioinformatics 19(18):2500
Fiser A, Do RK, Sali A (2000) Protein Sci 9(9):1753
MacKenzie KR, Prestegard JH, Engelman DM (1997) Science 276(5309):131
Northrup SH, Laughner T, Stevenson G (1999) MacroDox macromolecular simulation program. Tennessee Technological University, Department of Chemistry, Cookeville, TN
Northrup SH, Boles JO, Reynolds JCL (1987) J Phys Chem 91:5991
Northrup SH, Thomasson KA, Miller CM, Barker PD, Eltis LD, Guillemette JG, Inglis SC, Mauk AG (1993) Biochemistry 32(26):6613
Smoluchowski MV (1917) Z Phys Chem 92:129
Ermak DL, McCammon JA (1978) J Chem Phys 69:1352
Warwicker J, Watson HC (1982) J Mol Biol 157(4):671
Gabdoulline RR, Wade RC (1998) Methods 14(3):329
Nelder JA, Mead R (1965) Comput J 7:308
Landolt-Marticorena C, Williams KA, Deber CM, Reithmeier RA (1993) J Mol Biol 229(3):602
Arkin IT, Brunger AT (1998) Biochim Biophys Acta 1429(1):113
Killian JA, von Heijne G (2000) Trends Biochem Sci 25(9):429
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639
Acknowledgements
We thank Professor S. H. Northrup for his permission to adapt the MacroDox3.2.2 Program, and for his helpful discussions. We gratefully acknowledge financial support from National Institute Health Grant DC007721 (M.C.), and DC006696 (Marianna Max). The computations were made possible by grants of the National Center for Supercomputing Applications under MCB060020P and MCB070095T (MC).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Cui, M., Mezei, M. & Osman, R. Modeling dimerizations of transmembrane proteins using Brownian dynamics simulations. J Comput Aided Mol Des 22, 553–561 (2008). https://doi.org/10.1007/s10822-008-9198-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-008-9198-3