[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Quantitative structure–activity relationship analysis of canonical inhibitors of serine proteases

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Correlation analysis was carried out between binding affinity data values from the literature and physicochemical molecular descriptors of two series of single point mutated canonical inhibitors of serine proteases, namely bovine pancreatic trypsin inhibitor (BPTI) and turkey ovomucoid third domain (OMTKY3), toward seven enzymes. Simple quantitative structure–activity relationship (QSAR) models based on either single or double linear regressions (SLR or DLR) were obtained, which highlight the role of hydrophobic and bulk/polarizability features of mutated amino acids of the inhibitors in modulating both affinity and specificity. The utility of the QSAR paradigm applied to the analysis of mutagenesis data was underlined, resulting in a simple tool to quantitatively help deciphering structure–function/activity relationships (SFAR) of different protein systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Otlewski J, Jelen F, Zakrzewska M, Oleksy A (2005) EMBO J 24:1303

    Article  CAS  Google Scholar 

  2. Otlewski J, Krowarsch D, Apostoluk W (1999) Acta Biochim Pol 46:531

    CAS  Google Scholar 

  3. Bode W, Huber R (1992) Eur J Biochem 204:433

    Article  CAS  Google Scholar 

  4. Helland R, Berglund GI, Otlewski J, Apostoluk W, Andersen OA, Willassen NP, Smalas AO (1999) Acta Crystallogr D Biol Crystallogr 55:139

    Article  CAS  Google Scholar 

  5. Helland R, Otlewski J, Sundheim O, Dadlez M, Smalas AO (1999) J Mol Biol 287:923

    Article  CAS  Google Scholar 

  6. Mekonnen SM, Olufsen M, Smalas AO, Brandsdal BO (2006) J Mol Graph Model 25:176

    Article  CAS  Google Scholar 

  7. Schechter I, Berger A (1967) Biochem Biophys Res Commun 27:157

    Article  CAS  Google Scholar 

  8. Krowarsch D, Dadlez M, Buczek O, Krokoszynska I, Smalas AO, Otlewski J (1999) J Mol Biol 289:175

    Article  CAS  Google Scholar 

  9. Lu W, Apostol I, Qasim MA, Warne N, Wynn R, Zhang WL, Anderson S, Chiang YW, Ogin E, Rothberg I, Ryan K, Laskowski M Jr (1997) J Mol Biol 266:441

    Article  CAS  Google Scholar 

  10. Laskowski M Jr, Qasim MA, Yi Z (2003) Curr Opin Struct Biol 13:130

    Article  CAS  Google Scholar 

  11. Almlof M, Aqvist J, Smalas AO, Brandsdal BO (2006) Biophys J 90:433

    Article  CAS  Google Scholar 

  12. Brandsdal BO, Aqvist J, Smalas AO (2001) Protein Sci 10:1584

    Article  CAS  Google Scholar 

  13. Brandsdal BO, Smalas AO, Aqvist J (2006) Proteins 64:740

    Article  CAS  Google Scholar 

  14. Franke R (1984) Theoretical drug design methods. Elsevier

  15. Selassie CD (2003) In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery. Wiley

  16. Scheer A, Fanelli F, Costa T, De Benedetti PG, Cotecchia S (1997) Proc Natl Acad Sci USA 94:808

    Article  CAS  Google Scholar 

  17. Bahia DS, Wise A, Fanelli F, Lee M, Rees S, Milligan G (1998) Biochemistry 37:11555

    Article  CAS  Google Scholar 

  18. Hopp TP, Woods KR (1981) Proc Natl Acad Sci USA 78:3824

    Article  CAS  Google Scholar 

  19. Kyte J, Doolittle RF (1982) J Mol Biol 157:105

    Article  CAS  Google Scholar 

  20. Nicholls A, Sharp KA, Honig B (1991) Proteins 11:281

    Article  CAS  Google Scholar 

  21. Sharp KA, Nicholls A, Friedman R, Honig B (1991) Biochemistry 30:9686

    Article  CAS  Google Scholar 

  22. Charton M, Charton BI (1982) J Theor Biol 99:629

    Article  CAS  Google Scholar 

  23. Frommel C (1984) J Theor Biol 111:247

    Article  CAS  Google Scholar 

  24. Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH (1985) Science 229:834

    Article  CAS  Google Scholar 

  25. Eriksson L, Jonsson J, Sjostrom M, Wold S (1989) Prog Clin Biol Res 291:131

    CAS  Google Scholar 

  26. Grantham R (1974) Science 185:862

    Article  CAS  Google Scholar 

  27. Krigbaum WR, Komoriya A (1979) Biochim Biophys Acta 576:229

    CAS  Google Scholar 

  28. Krigbaum WR, Komoriya A (1979) Biochim Biophys Acta 576:204

    CAS  Google Scholar 

  29. Sandberg M, Eriksson L, Jonsson J, Sjostrom M, Wold S (1998) J Med Chem 41:2481

    Article  CAS  Google Scholar 

  30. Sjostrom M, Eriksson L, Hellberg S, Jonsson J, Skagerberg B, Wold S (1989) Prog Clin Biol Res 291:313

    CAS  Google Scholar 

  31. Skagerberg B, Clementi S, Sjostrom M, Tosato ML, Wold S (1989) Prog Clin Biol Res 291:127

    CAS  Google Scholar 

  32. Stahle L, Wold S (1988) Prog Med Chem 25:291

    Article  CAS  Google Scholar 

  33. Mei H, Liao ZH, Zhou Y, Li SZ (2005) Biopolymers 80:775

    Article  CAS  Google Scholar 

  34. von Heijne G, Blomberg C (1979) Eur J Biochem 97:175

    Article  Google Scholar 

  35. Dell’Orco D, De Benedetti PG, Fanelli F (2007) BMC Struct Biol 7:37

    Article  CAS  Google Scholar 

  36. Freyhult EK, Andersson K, Gustafsson MG (2003) Biophys J 84:2264

    CAS  Google Scholar 

  37. Wang T, Tomic S, Gabdoulline RR, Wade RC (2004) Biophys J 87:1618

    Article  CAS  Google Scholar 

  38. Tomic S, Bertosa B, Wang T, Wade RC (2007) Proteins 67:435

    Article  CAS  Google Scholar 

  39. Wang T, Wade RC (2002) J Med Chem 45:4828

    Article  CAS  Google Scholar 

  40. Scheidig AJ, Hynes TR, Pelletier LA, Wells JA, Kossiakoff AA (1997) Protein Sci 6:1806

    CAS  Google Scholar 

  41. Baker BM, Murphy KP (1997) J Mol Biol 268:557

    Article  CAS  Google Scholar 

  42. Baker BM, Murphy KP (1998) Methods Enzymol 295:294

    CAS  Google Scholar 

  43. Dell’Orco D, De Benedetti PG, Fanelli F (2006) From computational biophysics to systems biology workshop, vol 34. NIC series, p. 67

  44. Dell’Orco D,Seeber M, De Benedetti PG, Fanelli F (2005) J Chem Inf Model 45:1429

    Article  CAS  Google Scholar 

  45. Chen R, Li L, Weng Z (2003) Proteins 52:80

    Article  CAS  Google Scholar 

  46. Fanelli F, Ferrari S (2006) J Struct Biol 153:278

    Article  CAS  Google Scholar 

  47. Dell’Orco D, De Benedetti PG, Fanelli F (2007) J Phys Chem B 111:9114

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Prof. Francesca Fanelli for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Giuseppe De Benedetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell’Orco, D., De Benedetti, P.G. Quantitative structure–activity relationship analysis of canonical inhibitors of serine proteases. J Comput Aided Mol Des 22, 469–478 (2008). https://doi.org/10.1007/s10822-008-9175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-008-9175-x

Keywords

Navigation