[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Ab initio computational modeling of long loops in G-protein coupled receptors

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A newly developed approach for predicting the structure of segments that connect known elements of secondary structure in proteins has been applied to some of the longer loops in the G-protein coupled receptors (GPCRs) rhodopsin and the dopamine receptor D2R. The algorithm uses Monte Carlo (MC) simulation in a temperature annealing protocol combined with a scaled collective variables (SCV) technique to search conformation space for loop structures that could belong to the native ensemble. Except for rhodopsin, structural information is only available for the transmembrane helices (TMHs), and therefore the usual approach of finding a single conformation of lowest energy has to be abandoned. Instead the MC search aims to find the ensemble located at the absolute minimum free energy, i.e., the native ensemble. It is assumed that structures in the native ensemble can be found by an MC search starting from any conformation in the native funnel. The hypothesis is that native structures are trapped in this part of conformational space because of the high-energy barriers that surround the native funnel. In this work it is shown that the crystal structure of the second extracellular loop (e2) of rhodopsin is a member of this loop’s native ensemble. In contrast, the crystal structure of the third intracellular loop is quite different in the different crystal structures that have been reported. Our calculations indicate, that of three crystal structures examined, two show features characteristic of native ensembles while the other one does not. Finally the protocol is used to calculate the structure of the e2 loop in D2R. Here, the crystal structure is not known, but it is shown that several side chains that are involved in interaction with a class of substituted benzamides assume conformations that point into the active site. Thus, they are poised to interact with the incoming ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lessel U, Schomburg D (1999) Proteins 37:56

    Article  CAS  Google Scholar 

  2. Petoukhov MV, Eady NA, Brown KA, Svergun DI (2002) Biophys J 83:3113

    Article  CAS  Google Scholar 

  3. Visiers I, Ballesteros JA, Weinstein H (2002) In: Iyengar I, Hildebrandt J (eds) Three dimensional representations of GPCR structures and mechanisms, in Methods Enzymol. Academic Press, New York

  4. Mehler EL, Periole X, Hassan SA, Weinstein H (2002) J Comp Aided Mol Design 16:841

    Article  CAS  Google Scholar 

  5. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, LeTrong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739

    Article  CAS  Google Scholar 

  6. Okada T, Fujiyoshi Y, Silow M, Navarro J, Landau EM, Shichida Y (2002) PNAS 99:5982

    Article  CAS  Google Scholar 

  7. Li J, Edwards PC, Burghammer B, Villa C, Schertler GFX (2004) J Mol Biol 343:1409

    Article  CAS  Google Scholar 

  8. Filipek S, Teller DC, Palczewski K, Stenkamp R (2003) Annu Rev Biophys Biomol Struct 32:375

    Article  CAS  Google Scholar 

  9. Ballesteros JA, Shi L, Javitch JA (2001) Mol Pharmacol 60:1

    CAS  Google Scholar 

  10. Shi L, Javitch JA (2002) Annu Rev Pharmacol Toxicol 42:437

    Article  CAS  Google Scholar 

  11. Pierce KL, Premont RT, Lefkowitz RJ (2002) Nat Rev Mol Cell Biol 3:639

    Article  CAS  Google Scholar 

  12. Rapp CS, Friesner RA (1999) PROTEINS Struct Funct Genet 35:173

    Article  CAS  Google Scholar 

  13. Xiang ZX, Soto CS, Honig B (2002) PNAS 99:7432

    Article  CAS  Google Scholar 

  14. Liu Z, Mao F, Li W, Han Y, Lai L (2000) J Mol Mod 6:1

    Article  CAS  Google Scholar 

  15. Hornak V, Simmerling C (2003) PROTEINS 51:577

    Article  CAS  Google Scholar 

  16. Rosenbach D, Rosenfeld R (1995) Protein Sci 4:496

    Article  CAS  Google Scholar 

  17. Hassan SA, Mehler EL, Weinstein H (2002) In: Hark K, Schlick T (eds) Structure calculations of protein segments connecting domains with defined secondary structure: A simulated annealing Monte Carlo combined with biased scaled collective variables technique, in Lecture notes in computational science and engineering. Springer Verlag, Ag., New York, p 197

  18. Hassan SA, Mehler EL, Zhang D, Weinstein H (2003) Proteins 51:109

    Article  CAS  Google Scholar 

  19. Rohl CA, Strauss CEM, Chivian D, Baker D (2004) Proteins 55:656

    Article  CAS  Google Scholar 

  20. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) Proteins 55:351

    Article  CAS  Google Scholar 

  21. DePristo MA, de Bakker PIW, Lovell SC, Blundell TL (2003) Proteins 51:41

    Article  CAS  Google Scholar 

  22. de Bakker PIW, DePristo MA, Burke DF, Blundell TL (2003) Proteins 51:21

    Article  CAS  Google Scholar 

  23. Das B, Meirovitch H (2003) Proteins 51:470

    Article  CAS  Google Scholar 

  24. Zhang H, Lai L, Wang L, Han Y, Tang Y (1997) Biopolymers 41:61

    Article  CAS  Google Scholar 

  25. MacKinnon R (2003) FEBS Lett 555:62

    Article  CAS  Google Scholar 

  26. Tappura K, Lahtela-Kakkonen M, Teleman O (2000) J Comp Chem 21:388

    Article  CAS  Google Scholar 

  27. Cheng X, Hornak V, Simmerling C (2004) J Phys Chem B 108:426

    Article  CAS  Google Scholar 

  28. Hansmann UHE, Okamoto Y (1999) Curr Opin Struct Biol 9:177

    Article  CAS  Google Scholar 

  29. Sugita Y, Okamoto Y (1999) Chem Phys Lett 314:141

    Article  CAS  Google Scholar 

  30. Woods CJ, Essex JW, King MA (2003) J Phys Chem B 107:13703

    Article  CAS  Google Scholar 

  31. Woods CJ, Essex JW, King MA (2003) J Phys Chem B 107:13711

    Article  CAS  Google Scholar 

  32. Mehler EL, Hassan SA, Kortagere S, Weinstein H (2006) PROTEINS: Struct Func Genet 64:in EarlyView

  33. Noguti T, Go N (1985) Biopolymers 24:527

    Article  CAS  Google Scholar 

  34. Anfinsen CB (1973) Science 181:223

    Article  CAS  Google Scholar 

  35. Hassan SA, Guarnieri F, Mehler EL (2000) J Phys Chem B 104:6478

    Article  CAS  Google Scholar 

  36. Hassan SA, Mehler EL (2001) Int J Quant Chem 83:193

    Article  CAS  Google Scholar 

  37. Hassan SA, Mehler EL (2002) PROTEINS: Struct Funct Genet 47:45

    Article  CAS  Google Scholar 

  38. Li XF, Hassan SA, Mehler EL (2005) Proteins 60:464

    Article  CAS  Google Scholar 

  39. Ben-Naim A (1980) Hydrophobic interactions. New York, Plenum Press

    Google Scholar 

  40. Chandler D (2002) Nature 417:491

    Article  CAS  Google Scholar 

  41. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comp Chem 4:187

    Article  CAS  Google Scholar 

  42. Periole X, Ceruso MA, Mehler EL (2004) Biochemistry 43:6858

    Article  CAS  Google Scholar 

  43. Hassan SA, Mehler EL (2005) Int J Quant Chem 102:986

    Article  CAS  Google Scholar 

  44. Moennigmann M, Floudas CA (2005) PROTEINS: Struct Funct Genet 61:748

    Article  CAS  Google Scholar 

  45. Fiser A, Kinh Gian Do R, Sali A (2000) Protein Sci, 1753

  46. Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) J Mol Biol 342:571

    Article  CAS  Google Scholar 

  47. Shi L, Javitch JA (2004) Proc Nat Acad Sci (USA) 101:440

    Article  CAS  Google Scholar 

  48. Javitch JA, Ballesteros JA Weinstein H, Chen J (1998) Biochemistry 37:998

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computational support was provided by the National Science Foundation Terascale Computing System at the Pittsburgh Supercomputing Center. The authors also acknowledge access to the computer facilities at the Institute of Computational Biomedicine (ICB) of Weill Medical College of Cornell University. Support of the work by NIH Grants R01-DA15170, R01-MH063162 and P01-DA012923 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest L. Mehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortagere, S., Roy, A. & Mehler, E.L. Ab initio computational modeling of long loops in G-protein coupled receptors. J Comput Aided Mol Des 20, 427–436 (2006). https://doi.org/10.1007/s10822-006-9056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9056-0

Keywords

Navigation