[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Pharmacophore model for bile acids recognition by the FPR receptor

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Formyl-peptide receptors (FPRs) belong to the family A of the G-protein coupled receptor superfamily and include three subtypes: FPR, FPR-like-1 and FPR-like-2. They have been involved in the control of␣many inflammatory processes promoting the recruitment and infiltration of leukocytes in regions of inflammation through the molecular recognition of chemotactic factors. A large number of structurally diverse chemotypes modulate the activity of FPRs. Newly identified antagonists include bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). The molecular recognition of these compounds at FPR receptor was computationally investigated using both ligand- and structure-based approaches. Our findings suggest that all antagonists bind at the first third of the seven helical bundles. A closer inspection of bile acid interaction reveals a number of unexploited anchor points in the binding site that may be used to aid the design of new potent and selective bile acids derivatives at FPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GPCR:

G protein-coupled receptor

FPR:

formylpeptide receptor

FPRL-1:

formyl peptide receptor like type-1

FPRL-2:

formyl peptide receptor like type-2

DCA:

deoxycholic acid

CDCA:

chenodeoxycholic acid

References

  1. Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, Becker EL, Ward PA (1984) J Biol Chem 259:5430

    CAS  Google Scholar 

  2. Schiffmann E, Showell HV, Corcoran BA, Ward PA, Smith E, Becker EL (1975) J Immunol 114:1831

    CAS  Google Scholar 

  3. Carp H (1982) J Exp Med 155:264

    Article  CAS  Google Scholar 

  4. Le Y, Murphy PM, Wang JM (2002) Trends Immunol 23:541

    Article  CAS  Google Scholar 

  5. Iribarren P, Zhou Y, Hu J, Le Y, Wang JM (2005) Immunol Res 31:165

    Article  CAS  Google Scholar 

  6. Le Y, Yazawa H, Gong W, Yu Z, Ferrans VJ, Murphy PM, Wang JM (2001) J Immunol 166:1448

    CAS  Google Scholar 

  7. Walther A, Riehemann K, Gerke V (2000) Mol Cell 5:831

    Article  CAS  Google Scholar 

  8. Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN (1997) J Exp Med 185:1693

    Article  CAS  Google Scholar 

  9. Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ, Wang JM (1999) J Exp Med 189:395

    Article  CAS  Google Scholar 

  10. Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ, Wang JM (2001) J Neurosci 21:RC123:1

    CAS  Google Scholar 

  11. Chen X, Mellon RD, Yang L, Dong H, Oppenheim JJ, Howard OM (2002) Biochem Pharmacol 63:533

    Article  CAS  Google Scholar 

  12. Chen X, Yang D, Shen W, Dong HF, Wang JM, Oppenheim JJ, Howard MZ (2000) Inflamm Res 49:744

    Article  CAS  Google Scholar 

  13. Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Mol Cell 3:543

    Article  CAS  Google Scholar 

  14. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Science 284:1365

    Article  CAS  Google Scholar 

  15. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Science 284:1362

    Article  CAS  Google Scholar 

  16. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K (2002) Biochem Biophys Res Commun 298:714

    Article  CAS  Google Scholar 

  17. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) J Biol Chem 278:9435

    Article  CAS  Google Scholar 

  18. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Nature 439:484

    Article  CAS  Google Scholar 

  19. Muller G (2003) Drug Discov Today 8:681

    Article  Google Scholar 

  20. Costantino G, Macchiarulo A, Entrena-Guadix A, Camaioni E, Pellicciari R (2003) Bioorg Med Chem Lett 13:1865

    Article  CAS  Google Scholar 

  21. Costantino G, Entrena-Guadix A, Macchiarulo A, Gioiello A, Pellicciari R (2005) J Med Chem 48:3251

    Article  CAS  Google Scholar 

  22. Edwards BS, Bologa C, Young SM, Balakin KV, Prossnitz ER, Savchuck NP, Sklar LA, Oprea TI (2005) Mol Pharmacol 68:1301

    Article  CAS  Google Scholar 

  23. C.C.G. Inc (2005) Molecular operating Environment (MOE)

  24. Schroedinger LLC New York, GLIDE 3.5 (2005)

  25. Schroedinger LLC New York, PHASE 1.0 (2005)

  26. Dalpiaz A, Ferretti ME, Pecoraro R, Fabbri E, Traniello S, Scatturin A, Spisani S (1999) Biochim Biophys Acta 1432:27

    CAS  Google Scholar 

  27. Dalpiaz A, Ferretti ME, Vertuani G, Traniello S, Scatturin A, Spisani S (2002) Eur J Pharmacol 436:187

    Article  CAS  Google Scholar 

  28. Stenson WF, Mehta J, Spilberg I (1984) Biochem Pharmacol 33:407

    Article  CAS  Google Scholar 

  29. Raiden S, Giordano M, Andonegui G, Trevani AS, Lopez DH, Nahmod V, Geffner JR (1997) J Pharmacol Exp Ther 281:624

    CAS  Google Scholar 

  30. Levesque L, Gaudreault RC, Marceau F (1991) Can J Physiol Pharmacol 69:419

    CAS  Google Scholar 

  31. Kitagawa O, Van der Velde D, Dutta D, Morton M, Takusagawa F, Aubé J (1995) J Am Chem Soc 19:5169

    Article  Google Scholar 

  32. Tran TT, McKie J, Meutermans WD, Bourne GT, Andrews PR, Smythe ML (2005) J Comput Aided Mol Des 19:551

    Article  CAS  Google Scholar 

  33. Miettinen HM, Mills JS, Gripentrog JM, Dratz EA, Granger BL, Jesaitis AJ (1997) J Immunol 159:4045

    CAS  Google Scholar 

  34. Mills JS, Miettinen HM, Cummings D, Jesaitis AJ (2000) J␣Biol Chem 275:39012

    Article  CAS  Google Scholar 

  35. Klco JM, Nikiforovich GV, Baranski TJ (2006) J Biol Chem 281:12010

    Article  CAS  Google Scholar 

  36. Perez HD, Vilander L, Andrews WH, Holmes R (1994) J␣Biol Chem 269:22485

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pellicciari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, C., Macchiarulo, A., Costantino, G. et al. Pharmacophore model for bile acids recognition by the FPR receptor. J Comput Aided Mol Des 20, 295–303 (2006). https://doi.org/10.1007/s10822-006-9055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9055-1

Keywords

Navigation