Summary
Evolutionary computing is a general optimization mechanism successfully implemented for a variety of numeric problems in a variety of fields, including structural biology. We here present an evolutionary approach to optimize helix stability in peptides and proteins employing the AGADIR energy function for helix stability as scoring function. With the ability to apply masks determining positions, which are to remain constant or fixed to a certain class of amino acids, our algorithm is capable of developing stable helical scaffolds containing a wide variety of structural and functional amino acid patterns. The algorithm showed good convergence behaviour in all tested cases and can be parameterized in a wide variety of ways. We have applied our algorithm for the optimization of the stability of prion protein helix 1, a structural element of the prion protein which is thought to play a crucial role in the conformational transition from the cellular to the pathogenic form of the prion protein, and which therefore poses an interesting target for pharmacological as well as genetic engineering approaches to counter the as of yet uncurable prion diseases. NMR spectroscopic investigations of selected stabilizing and destabilizing mutations found by our algorithm could demonstrate its ability to create stabilized variants of secondary structure elements.
Similar content being viewed by others
References
Kraemer-Pecore C.M., Wollacott A.M., Desjarlais J.R., (2001) Curr. Opin. Chem. Biol. 5: 690
Pierce N.A., Winfree E., (2002) Protein Eng. 15: 779
Kamtekar S., Schiffer J.M., Xiong H., Babik J.M., Hecht M.H., (1993) Science 262: 1680
Dill K.A., (1990) Science 250: 297
Dantas G., Kuhlman B., Callender D., Wong M., Baker D., (2003) J. Mol. Biol. 332: 449
Desjarlais J.R., Handel T.M., (1995) Protein Sci. 4: 2006
Lazar G.A., Handel T.M., (1998) Curr. Opin. Chem. Biol. 2: 675
Jiang X., Farid H., Pistor E., Farid R.S., (2000) Protein Sci. 9: 403
Kussell E., Shimada J., Shakhnovich E.I., (2001) J. Mol. Biol. 311: 183
Gordon D.B., Hom G.K., Mayo S.L., Pierce N.A., (2002) J. Comput. Chem. 24: 232
Isogai Y., Ota M., Ishii A., Ishida M., Nishikawa K., (2002) Protein Eng 15: 555
Bolon D.N., Grant R.A., Baker T.A., Sauer R.T., (2005) Proc. Natl. Acad. Sci. USA 102: 12724
Pokala N., Handel T.M., (2005) J. Mol. Biol. 347: 203
Bai Y., Feng H., (2004) Eur. J. Biochem. 271: 1609
Hoess R.H., (2001) Chem. Rev. 101: 3205
Lipovsek D., Pluckthun A., (2004) J. Immunol. Methods 290: 51
Binz H.K., Amstutz P., Kohl A., Stumpp M.T., Briand C., Forrer P., Grutter M.G., Pluckthun A., (2004) Nat. Biotechnol. 22: 575
Rebar E.J., Pabo C.O., (1994) Science 263: 671
Legendre D., Laraki N., Graslund T., Bjornvad M.E., Bouchet M., Nygren P.A., Borchert T.V., Fastrez J., (2000) J. Mol. Biol. 296: 87
Hellinga H.W., Richards F.M., (1994) Proc. Natl. Acad. Sci. USA 91: 5803
Pace C.N., Scholtz J.M., (1998) Biophys. J. 75: 422
Miller J.S., Kennedy R.J., Kemp D.S., (2002) J. Am. Chem. Soc. 124: 945
Scholtz J.M., Qian H., Robbins V.H., Baldwin R.L., (1993) Biochemistry 32: 9668
Shi Z., Olson C.A., Bell A.J., Jr., Kallenbach N.R., (2001) Biopolymers 60: 366
Armstrong K.M., Fairman R., Baldwin R.L., (1993) J. Mol. Biol. 230: 284
Butterfield S.M., Patel P.R., Waters M.L., (2002) J. Am. Chem. Soc. 124: 9751
Aurora R., Rose G.D., (1998) Protein Sci. 7: 21
Sagermann M., Martensson L.G., Baase W.A., Matthews B.W., (2002) Protein Sci. 11: 516
Munoz V., Serrano L., (1994) Nat. Struct. Biol. 1: 399
Munoz V., Serrano L., (1995) J. Mol. Biol. 245: 275
Munoz V., Serrano L., (1995) J. Mol. Biol. 245:297
Viguera A.R., Serrano L., (1995) Biochemistry 34: 8771
Munoz V., Serrano L., (1997) Biopolymers 41:495
Lacroix E., Viguera A.R., Serrano L., (1998) J. Mol. Biol. 284: 173
Ziegler J., Sticht H., Marx U.C., Muller W., Rosch P., Schwarzinger S., (2003) J. Biol. Chem. 278: 50175
Zahn R., Liu A., Luhrs T., Riek R., von S.C., Lopez G.F., Billeter M., Calzolai L., Wider G., Wuthrich K., (2000) Proc. Natl. Acad. Sci. USA 97: 145
Megy S., Bertho G., Kozin S.A., Debey P., Hoa G.H., Girault J.P. (2004) Protein Sci. 13: 3151
Liu A., Riek R., Zahn R., Hornemann S., Glockshuber R., Wuthrich K., (1999) Biopolymers 51: 145
Sharman G.J., Kenward N., Williams H.E., Landon M., Mayer R.J., Searle M.S., (1998) Fold. Des 3: 313
Govaerts C., Wille H., Prusiner S.B., Cohen F.E., (2004) Proc. Natl. Acad. Sci. USA 101: 8342
Stork M., Giese A., Kretzschmar H.A., Tavan P., (2005) Biophys. J. 88: 2442
Perrier V., Kaneko K., Safar J., Vergara J., Tremblay P., DeArmond S.J., Cohen F.E., Prusiner S.B., Wallace A.C., (2002) Proc. Natl. Acad. Sci. USA 99: 13079
Kosiol C., Goldman N., (2005) Mol. Biol. Evol. 22: 193
Kabsch W., Sander C., (1983) Biopolymers 22: 2577
Wishart D.S., Sykes B.D., (1994) Methods Enzymol. 239: 363
Wishart D.S., Case D.A., (2001) Methods Enzymol. 338: 3
Mielke S.P., Krishnan V.V., (2004) J. Biomol. NMR 30: 143
Schwarzinger S., Kroon G.J., Foss T.R., Chung J., Wright P.E., Dyson H.J., (2001) J. Am. Chem. Soc. 123: 2970
Schwarzinger S., Kroon G.J., Foss T.R., Wright P.E., Dyson H.J., (2000) J. Biomol. NMR 18: 43
Calzolai L., Zahn R., (2003) J. Biol. Chem. 278: 35592
Hornemann S., Glockshuber R., (1998) Proc. Natl. Acad. Sci. USA 95: 6010
Acknowledgements
We thank Prof. Paul Rösch for generous access to NMR resources and for his continued support, as well as Prof. Luis Serrano for making the AGADIR executables available to us. Financial support is acknowledged from the Bavarian Prion Research Platform (ForPrion) and from a grant from the Volkswagen Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ziegler, J., Schwarzinger, S. Genetic algorithms as a tool for helix design – computational and experimental studies on prion protein helix 1. J Comput Aided Mol Des 20, 47–54 (2006). https://doi.org/10.1007/s10822-006-9035-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-006-9035-5