[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Genetic algorithms as a tool for helix design – computational and experimental studies on prion protein helix 1

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Evolutionary computing is a general optimization mechanism successfully implemented for a variety of numeric problems in a variety of fields, including structural biology. We here present an evolutionary approach to optimize helix stability in peptides and proteins employing the AGADIR energy function for helix stability as scoring function. With the ability to apply masks determining positions, which are to remain constant or fixed to a certain class of amino acids, our algorithm is capable of developing stable helical scaffolds containing a wide variety of structural and functional amino acid patterns. The algorithm showed good convergence behaviour in all tested cases and can be parameterized in a wide variety of ways. We have applied our algorithm for the optimization of the stability of prion protein helix 1, a structural element of the prion protein which is thought to play a crucial role in the conformational transition from the cellular to the pathogenic form of the prion protein, and which therefore poses an interesting target for pharmacological as well as genetic engineering approaches to counter the as of yet uncurable prion diseases. NMR spectroscopic investigations of selected stabilizing and destabilizing mutations found by our algorithm could demonstrate its ability to create stabilized variants of secondary structure elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kraemer-Pecore C.M., Wollacott A.M., Desjarlais J.R., (2001) Curr. Opin. Chem. Biol. 5: 690

    Article  CAS  Google Scholar 

  2. Pierce N.A., Winfree E., (2002) Protein Eng. 15: 779

    Article  CAS  Google Scholar 

  3. Kamtekar S., Schiffer J.M., Xiong H., Babik J.M., Hecht M.H., (1993) Science 262: 1680

    Article  CAS  Google Scholar 

  4. Dill K.A., (1990) Science 250: 297

    Article  CAS  Google Scholar 

  5. Dantas G., Kuhlman B., Callender D., Wong M., Baker D., (2003) J. Mol. Biol. 332: 449

    Article  CAS  Google Scholar 

  6. Desjarlais J.R., Handel T.M., (1995) Protein Sci. 4: 2006

    CAS  Google Scholar 

  7. Lazar G.A., Handel T.M., (1998) Curr. Opin. Chem. Biol. 2: 675

    Article  CAS  Google Scholar 

  8. Jiang X., Farid H., Pistor E., Farid R.S., (2000) Protein Sci. 9: 403

    CAS  Google Scholar 

  9. Kussell E., Shimada J., Shakhnovich E.I., (2001) J. Mol. Biol. 311: 183

    Article  CAS  Google Scholar 

  10. Gordon D.B., Hom G.K., Mayo S.L., Pierce N.A., (2002) J. Comput. Chem. 24: 232

    Article  CAS  Google Scholar 

  11. Isogai Y., Ota M., Ishii A., Ishida M., Nishikawa K., (2002) Protein Eng 15: 555

    Article  CAS  Google Scholar 

  12. Bolon D.N., Grant R.A., Baker T.A., Sauer R.T., (2005) Proc. Natl. Acad. Sci. USA 102: 12724

    Article  CAS  Google Scholar 

  13. Pokala N., Handel T.M., (2005) J. Mol. Biol. 347: 203

    Article  CAS  Google Scholar 

  14. Bai Y., Feng H., (2004) Eur. J. Biochem. 271: 1609

    Article  CAS  Google Scholar 

  15. Hoess R.H., (2001) Chem. Rev. 101: 3205

    Article  CAS  Google Scholar 

  16. Lipovsek D., Pluckthun A., (2004) J. Immunol. Methods 290: 51

    Article  CAS  Google Scholar 

  17. Binz H.K., Amstutz P., Kohl A., Stumpp M.T., Briand C., Forrer P., Grutter M.G., Pluckthun A., (2004) Nat. Biotechnol. 22: 575

    Article  CAS  Google Scholar 

  18. Rebar E.J., Pabo C.O., (1994) Science 263: 671

    Article  CAS  Google Scholar 

  19. Legendre D., Laraki N., Graslund T., Bjornvad M.E., Bouchet M., Nygren P.A., Borchert T.V., Fastrez J., (2000) J. Mol. Biol. 296: 87

    Article  CAS  Google Scholar 

  20. Hellinga H.W., Richards F.M., (1994) Proc. Natl. Acad. Sci. USA 91: 5803

    Article  CAS  Google Scholar 

  21. Pace C.N., Scholtz J.M., (1998) Biophys. J. 75: 422

    Article  CAS  Google Scholar 

  22. Miller J.S., Kennedy R.J., Kemp D.S., (2002) J. Am. Chem. Soc. 124: 945

    Article  CAS  Google Scholar 

  23. Scholtz J.M., Qian H., Robbins V.H., Baldwin R.L., (1993) Biochemistry 32: 9668

    Article  CAS  Google Scholar 

  24. Shi Z., Olson C.A., Bell A.J., Jr., Kallenbach N.R., (2001) Biopolymers 60: 366

    Article  CAS  Google Scholar 

  25. Armstrong K.M., Fairman R., Baldwin R.L., (1993) J. Mol. Biol. 230: 284

    Article  CAS  Google Scholar 

  26. Butterfield S.M., Patel P.R., Waters M.L., (2002) J. Am. Chem. Soc. 124: 9751

    Article  CAS  Google Scholar 

  27. Aurora R., Rose G.D., (1998) Protein Sci. 7: 21

    CAS  Google Scholar 

  28. Sagermann M., Martensson L.G., Baase W.A., Matthews B.W., (2002) Protein Sci. 11: 516

    Article  CAS  Google Scholar 

  29. Munoz V., Serrano L., (1994) Nat. Struct. Biol. 1: 399

    Article  CAS  Google Scholar 

  30. Munoz V., Serrano L., (1995) J. Mol. Biol. 245: 275

    Article  CAS  Google Scholar 

  31. Munoz V., Serrano L., (1995) J. Mol. Biol. 245:297

    Article  CAS  Google Scholar 

  32. Viguera A.R., Serrano L., (1995) Biochemistry 34: 8771

    Article  CAS  Google Scholar 

  33. Munoz V., Serrano L., (1997) Biopolymers 41:495

    Article  CAS  Google Scholar 

  34. Lacroix E., Viguera A.R., Serrano L., (1998) J. Mol. Biol. 284: 173

    Article  CAS  Google Scholar 

  35. Ziegler J., Sticht H., Marx U.C., Muller W., Rosch P., Schwarzinger S., (2003) J. Biol. Chem. 278: 50175

    Article  CAS  Google Scholar 

  36. Zahn R., Liu A., Luhrs T., Riek R., von S.C., Lopez G.F., Billeter M., Calzolai L., Wider G., Wuthrich K., (2000) Proc. Natl. Acad. Sci. USA 97: 145

    Article  CAS  Google Scholar 

  37. Megy S., Bertho G., Kozin S.A., Debey P., Hoa G.H., Girault J.P. (2004) Protein Sci. 13: 3151

    Article  CAS  Google Scholar 

  38. Liu A., Riek R., Zahn R., Hornemann S., Glockshuber R., Wuthrich K., (1999) Biopolymers 51: 145

    Article  CAS  Google Scholar 

  39. Sharman G.J., Kenward N., Williams H.E., Landon M., Mayer R.J., Searle M.S., (1998) Fold. Des 3: 313

    Article  CAS  Google Scholar 

  40. Govaerts C., Wille H., Prusiner S.B., Cohen F.E., (2004) Proc. Natl. Acad. Sci. USA 101: 8342

    Article  CAS  Google Scholar 

  41. Stork M., Giese A., Kretzschmar H.A., Tavan P., (2005) Biophys. J. 88: 2442

    Article  CAS  Google Scholar 

  42. Perrier V., Kaneko K., Safar J., Vergara J., Tremblay P., DeArmond S.J., Cohen F.E., Prusiner S.B., Wallace A.C., (2002) Proc. Natl. Acad. Sci. USA 99: 13079

    Article  CAS  Google Scholar 

  43. Kosiol C., Goldman N., (2005) Mol. Biol. Evol. 22: 193

    Article  CAS  Google Scholar 

  44. Kabsch W., Sander C., (1983) Biopolymers 22: 2577

    Article  CAS  Google Scholar 

  45. Wishart D.S., Sykes B.D., (1994) Methods Enzymol. 239: 363

    CAS  Google Scholar 

  46. Wishart D.S., Case D.A., (2001) Methods Enzymol. 338: 3

    Article  CAS  Google Scholar 

  47. Mielke S.P., Krishnan V.V., (2004) J. Biomol. NMR 30: 143

    Article  CAS  Google Scholar 

  48. Schwarzinger S., Kroon G.J., Foss T.R., Chung J., Wright P.E., Dyson H.J., (2001) J. Am. Chem. Soc. 123: 2970

    Article  CAS  Google Scholar 

  49. Schwarzinger S., Kroon G.J., Foss T.R., Wright P.E., Dyson H.J., (2000) J. Biomol. NMR 18: 43

    Article  CAS  Google Scholar 

  50. Calzolai L., Zahn R., (2003) J. Biol. Chem. 278: 35592

    Article  CAS  Google Scholar 

  51. Hornemann S., Glockshuber R., (1998) Proc. Natl. Acad. Sci. USA 95: 6010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Paul Rösch for generous access to NMR resources and for his continued support, as well as Prof. Luis Serrano for making the AGADIR executables available to us. Financial support is acknowledged from the Bavarian Prion Research Platform (ForPrion) and from a grant from the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ziegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, J., Schwarzinger, S. Genetic algorithms as a tool for helix design – computational and experimental studies on prion protein helix 1. J Comput Aided Mol Des 20, 47–54 (2006). https://doi.org/10.1007/s10822-006-9035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9035-5

Keywords

Navigation