[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Effects of channel blocking on information transmission and energy efficiency in squid giant axons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adair, R. (2003). Noise and stochastic resonance in voltage-gated ion channels. Proceedings of the National Academy of Sciences, 100(21), 12099–12104.

    Article  CAS  Google Scholar 

  • Alle, H., Roth, A., Geiger, J.R.P. (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325(5946), 1405–1408.

    Article  CAS  PubMed  Google Scholar 

  • Bear, M.F., Connors, B.W., Paradiso, M.A. (2007). Neuroscience: exploring the brain. Lippincott Williams & Wilkins.

  • Chow, C.C., & White, J.A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, D., & Sokoloff, L. (1999). Circulation and energy metabolism of the brain. In Siegel, G J, Agranoff, B W, Albers, R W, Fisher, S K, & Uhler, M D (Eds.) Basic neurochemistry: Molecular, cellular and medical aspects. New York: Lippincott-Raven.

  • Dayan, P., & Abbott, L. (2003). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Guo, D.Q., & Chen, M.M. (2016). Firing regulation of fast-spiking interneurons by autaptic inhibition. Europhysics Letters, 114, 30001.

    Article  Google Scholar 

  • Guo, D.Q., & Wu, S.D. (2016). Regulation of irregular neuronal firing by autaptic transmission. Scientific Reports, 6, 26096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänggi, P. (2002). Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem, 3(3), 285–290.

    Article  PubMed  Google Scholar 

  • Hille, B. (2001). Ionic channels of excitable membranes, 3rd edn. Sinauer Associates: Sunderland.

    Google Scholar 

  • Hodgkin, A. (1975). The optimum density of sodium channels in an unmyelinated nerve. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 270(908), 297–300.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laughlin, S.B., De Ruyter van Steveninck, R.R., Anderson, J.C. (1998). The metabolic cost of neural information. Nature Neuroscience, 1(1), 36–41.

    Article  CAS  PubMed  Google Scholar 

  • Lecar, H., & Nossal, R. (1971). Theory of threshold fluctuations in nerves: I. relationships between electrical noise and fluctuations in axon firing. Biophysical Journal, 11(12), 1048–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonnell, M., & Ward, L. (2011). The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, 12(7), 415–426.

    Article  CAS  PubMed  Google Scholar 

  • Moujahid, A., d’Anjou, A., Torrealdea, F. (2011). Energy and information in hodgkin-huxley neurons. Physical Review E, 83(3), 031912.

    Article  CAS  Google Scholar 

  • Niven, J. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211(11), 1792–1804.

    Article  CAS  PubMed  Google Scholar 

  • Ohiorhenuan, I.E., Mechler, F., Purpura, K.P., Schmid, A.M., Victor, J.D. (2010). Sparse coding and high-order correlations in fine-scale cortical networks. Nature, 466, 617–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter, D. (1957). Metabolism of the nervous system, 1st. New York: Elsevier Science and Technology Books.

    Google Scholar 

  • Schmid, G., Goychuk, I., Hänggi, P. (2001). Stochastic resonance as a collective property of ion channel assemblies. Europhysics Letters, 56(1), 22.

    Article  CAS  Google Scholar 

  • Schmid, G., Goychuk, I., Hänggi, P. (2004). Effect of channel block on the spiking activity of excitable membranes in a stochastic hodgkin–huxley model. Physical Biology, 1(2), 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Schneidman, E., Freedman, B., Segev, I. (1998). Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation, 10(7), 1679–1703.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, S., Machens, C.K., Herz, A.V.M., Laughlin, S.B. (2002). Energy-efficient coding with discrete stochastic events. Neural Computation, 14(6), 1323–1346.

    Article  PubMed  Google Scholar 

  • Sengupta, B., Faisal, A.A., Laughlin, S.B., Niven, J.E. (2013). The effect of cell size and channel density on neuronal information encoding and energy efficiency. Journal of Cerebral Blood Flow & Metabolism, 33(9), 1465–1473.

    Article  CAS  Google Scholar 

  • Sengupta, B., Stemmler, M., Laughlin, S.B., Niven, J.E. (2010). Action potential energy efficency varies among neuron types in vertebrates and invertebrates. PLOS Computational Biology, 6(7), e1000840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadlen, M.N., & Newsome, W.T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4(4), 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz, P.N., Manwani, A., Koch, C., London, M., Segev, I. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of Computational Neuroscience, 9(2), 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Strong, S., Koberle, R., De Ruyter van Steveninck, R.R., Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80(1), 197–200.

    Article  CAS  Google Scholar 

  • Van Rullen, R., & Thorpe, S.J. (2001). Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Computation, 13, 1255–1283.

    Article  PubMed  Google Scholar 

  • Wang, L., Wang, H., Yu, L., Chen, Y. (2011). Role of axonal sodium-channel band in neuronal excitability. Physical Review E, 84(5), 052901.

    Article  Google Scholar 

  • Wang, L.F., Jia, F., Liu, X.Z., Song, Y.L., Yu, L.C. (2015). Temperature effects on information capacity and energy efficiency of hodgkin–huxley neuron. Chinese Physics Letters, 32(10), 108701.

    Article  Google Scholar 

  • Ward, L.M., & Greenwood, PE. (2016). Stochastic facilitation in the brain? Journal of Statistical Mechanics: Theory and Experiment, 2016(5), 054033.

    Article  Google Scholar 

  • White, J.A., Klink, R., Alonso, A., Kay, A.R. (1998). Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. Journal of Neurophysiology, 80(1), 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Wiesenfeld, K., & Moss, F. (1995). Stochastic resonance and the benefits of noise: from ice ages to crayfish and squids. Nature, 373(6509), 33–36.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz, E., Ozer, M., Baysal, V., Perc, M. (2016). Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Scientific Reports, 6, 30914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L.C., & Liu, L.W. (2014). Optimal size of stochastic hodgkin-huxley neuronal systems for maximal energy efficiency in coding pulse signals. Physical Review E, 89(3), 032725.

    Article  Google Scholar 

  • Yu, L.C., Zhang, C., Liu, L.W., Yu, Y.G. (2016). Energy-efficient population coding constrains network size of a neuronal array system. Scientific Reports, 6, 19369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L.C., & Yu, Y.G. (2017). Energy-efficient neural information processing in individual neurons and neuronal networks. Journal of Neuroscience Research, 95(11), 2253.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y.G., Hill, A.P., McCormick, D.A. (2012). Warm body temperature facilitates energy efficient cortical action potentials. PLOS Computational Biology, 8(4), 1–16.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11564034, 11105062, the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2015-119, 31920130008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianchun Yu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Susanne Schreiber

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yue, Y., Yu, Y. et al. Effects of channel blocking on information transmission and energy efficiency in squid giant axons. J Comput Neurosci 44, 219–231 (2018). https://doi.org/10.1007/s10827-017-0676-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-017-0676-2

Keywords

Navigation