[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Applying support vector regression analysis on grip force level-related corticomuscular coherence

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Voluntary motor performance is the result of cortical commands driving muscle actions. Corticomuscular coherence can be used to examine the functional coupling or communication between human brain and muscles. To investigate the effects of grip force level on corticomuscular coherence in an accessory muscle, this study proposed an expanded support vector regression (ESVR) algorithm to quantify the coherence between electroencephalogram (EEG) from sensorimotor cortex and surface electromyogram (EMG) from brachioradialis in upper limb. A measure called coherence proportion was introduced to compare the corticomuscular coherence in the alpha (7–15Hz), beta (15–30Hz) and gamma (30–45Hz) band at 25 % maximum grip force (MGF) and 75 % MGF. Results show that ESVR could reduce the influence of deflected signals and summarize the overall behavior of multiple coherence curves. Coherence proportion is more sensitive to grip force level than coherence area. The significantly higher corticomuscular coherence occurred in the alpha (p < 0.01) and beta band (p < 0.01) during 75 % MGF, but in the gamma band (p < 0.01) during 25 % MGF. The results suggest that sensorimotor cortex might control the activity of an accessory muscle for hand grip with increased grip intensity by changing functional corticomuscular coupling at certain frequency bands (alpha, beta and gamma bands).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoife, F., & Leonard, O.’. S. (2013). Effects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracy. International Journal of Industrial Ergonomics, 43, 91–99.

    Article  Google Scholar 

  • Babiloni, C., Vecchio, F., Bares, M., Brazdil, M., Nestrasil, I., Eusebi, F., Rossini, P. M., & Rektor, I. (2008). Functional coupling between anterior prefrontal cortex (BA10) and hand muscle contraction during intentional and imitative motor acts. NeuroImage, 39, 1314–1323.

    Article  PubMed  Google Scholar 

  • Bortel, R., & Sovka, P. (2006). EEG–EMG coherence enhancement. Signal Processing, 86, 1737–1751.

    Article  Google Scholar 

  • Caviness, J. N., Adler, C. H., Sabbagh, M. N., et al. (2003). Abnormal corticomuscular coherence is associated with the small amplitude cortical myoclonus in Parkinson’s Disease. Movement Disorders, 18, 1157–1162.

    Article  PubMed  Google Scholar 

  • Chakarov, V., Naranjo, J. R., Schulte-Monting, J., et al. (2009). Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. Journal of Neurophysiology, 102, 1115–1120.

    Article  PubMed  Google Scholar 

  • Cui, S. M., Liu, M. L., & Xin, S. (2007). Atlas of regional anatomy of the brain using MRI with functional correlations (pp. 59–60). Beijing: People’s Medical Publishing House.

    Google Scholar 

  • Fang, Y., Daly, J. J., Sun, J. Y., et al. (2009). Functional corticomuscular connection during reaching is weakened following stroke. Clinical Neurophysiology, 120, 994–1002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Halliday, D. M., Rosenberg, J. R., Amjad, A. M., Breeze, P., Conway, B. A., & Farmer, S. F. (1995). A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Progress in Biophysics and Molecular Biology, 64, 237–278.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, D. M., Conway, B. A., Farmer, S. F., & Rosenberg, J. R. (1998). Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neuroscience Letters, 241, 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Hao, D. M., Qin, W., & Wu, C. S. (2010). Motor cortex networks in stroke patients during recovery with fMRI. Transactions of Nanjing Univer sity of Aer onautics & Astr onautics, 27(1), 55–61.

    Google Scholar 

  • Johnson, A. N., & Shinohara, M. (2012). Corticomuscular coherence with and without additional task in the elderly. Journal of Applied Physiology, 112, 970–981.

    Article  PubMed  Google Scholar 

  • Johnson, A. N., Wheaton, L. A., & Shinohara, M. (2011). Attenuation of corticomuscular coherence with additional motor or non-motor task. Clinical Neurophysiology, 122, 356–363.

    Article  PubMed  Google Scholar 

  • Kamp, D., Krause, V., Butz, M., Schnitzler, A., & Pollok, B. (2013). Changes of cortico-muscular coherence: an early marker of healthy aging? Age, 35, 49–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kayser, J., & Tenke, C. E. (2006a). Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks. Clinical Neurophysiology, 117, 348–368.

    Article  PubMed  Google Scholar 

  • Kayser, J., & Tenke, C. E. (2006b). Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates. Clinical Neurophysiology, 117, 369–380.

    Article  PubMed  Google Scholar 

  • Kristeva, R., Patino, L., & Omlor, W. (2007). Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. NeuroImage, 36, 785–792.

    Article  PubMed  Google Scholar 

  • McClelland, V. M., Cvetkovic, Z., & Mills, K. R. (2012). Modulation of corticomuscular coherence by peripheral stimuli. Experimental Brain Research, 219, 275–292.

    Article  PubMed  Google Scholar 

  • Mears, R. P., & Spencer, K. M. (2012). Electrophysiological assessment of auditory stimulus-specific plasticity in schizophrenia. Biological Psychiatry, 71, 503–511.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendez-Balbuena, I., Huethe, F., Schulte-Monting, J., Leonhart, R., Manjarrez, E., & Kristeva, R. (2012). Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cerebral Cortex, 22, 628–638.

    Article  PubMed  Google Scholar 

  • Meng, F., Tong, K. Y., & Chan, S. T. (2008). Study on connectivity between coherent central rhythm and electromyographic activities. Journal of Neural Engineering, 5, 324–332.

    Google Scholar 

  • Meng, F., Tong, K. Y., Chan, S. T., Wong, W. W., Lui, K. H., Tang, K. W., Gao, X. R., & Gao, S. K. (2009). Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 234–243.

    Article  PubMed  Google Scholar 

  • Ohara, S., Nagamine, T., Ikeda, A., Kunieda, T., Matsumoto, R., Taki, W., Hashimoto, N., Baba, K., Mihara, T., Salenius, S., & Shibasaki, H. (2000). Electrocorticogram–electromyogram coherence during isometric contraction of hand muscle in human. Clinical Neurophysiology, 111, 2014–2024.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Omlor, W. G., Patino, L., Balbuena, I. M., et al. (2011). Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state. The Journal of Neuroscience, 31(22), 8037–8045.

    Article  CAS  PubMed  Google Scholar 

  • Pozdnoukhov, A., & Kanevski, M. (2008). Multi-scale support vector algorithms for hot spot detection and modeling. Stochastic Environmental Research and Risk Assessment, 22, 647–660.

    Article  Google Scholar 

  • Rosenberg, J. R., Amjad, A. M., Breeze, P., Brillinger, D. R., & Halliday, D. M. (1989). The Fourier approach to the identification of functional coupling between neuronal spike trains. Progress in Biophysics and Molecular Biology, 53, 1–31.

    Article  CAS  PubMed  Google Scholar 

  • Schoffelen, J. M., Oostenveld, R., & Fries, P. (2008). Imaging the human motor system’s beta-band synchronization during isometric contraction. NeuroImage, 41, 437–447.

    Article  PubMed  Google Scholar 

  • Suresh, D. M. (2011). Temporal dynamics of primary motor cortex gamma oscillation amplitude and piper corticomuscular coherence changes during motor control. Experimental Brain Research, 212, 623–633.

    Article  Google Scholar 

  • Tatsuya, M., Shinji, O., & Takashi, N. (2002). Cortical–muscular coherence. International Congress Series, 1226, 109–119.

    Article  Google Scholar 

  • Ushiyama, J., Suzuki, T., Masakado, Y., Hase, K., Kimura, A., Liu, M. G., & Ushiba, J. (2011). Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis anterior muscle in healthy young adults. Journal of Neurophysiology, 106, 1379–1388.

    Article  PubMed  Google Scholar 

  • Ushiyama, J., Masakado, Y., Fujiwara, T., Tsuji, T., Hase, K., Kimura, A., Liu, M. G., & Ushiba, J. (2012). Contraction level-related modulation of corticomuscular coherence differs between the tibialis anterior and soleus muscles in humans. Journal of Applied Physiology, 112, 1258–1267.

    Article  PubMed  Google Scholar 

  • Witte, M., Patino, L., Andrykiewicz, A., Hepp-Reymond, M. C., & Kristeva, R. (2007). Modulation of human corticomuscular beta-range coherence with low-level static forces. European Journal of Neuroscience, 26, 3564–3570.

    Article  PubMed  Google Scholar 

  • Yang, Q., Fang, Y., & Sune, C. K. (2009). Weakening of functional corticomuscular coupling during muscle fatigue. Brain Research, 1250, 101–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang, Q., Siemionow, V., Yao, W. X., et al. (2010). Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18, 97–106.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially sponsored by Natural Science Foundation of China (No. 81071231, 61175115 and 61370113), Beijing Natural Science Foundation (7132028&7132021), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD201304035), Jing-Hua Talents Project of Beijing University of Technology (2014-JH-L06).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Hao or Yanjun Zeng.

Additional information

Action Editor: Simon R Schultz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Han, X., Hao, D. et al. Applying support vector regression analysis on grip force level-related corticomuscular coherence. J Comput Neurosci 37, 281–291 (2014). https://doi.org/10.1007/s10827-014-0501-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0501-0

Keyword

Navigation