[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Response dynamics of bullfrog ON-OFF RGCs to different stimulus durations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Stimulus duration is an important feature of visual stimulation. In the present study, response properties of bullfrog ON-OFF retinal ganglion cells (RGCs) in exposure to different visual stimulus durations were studied. By using a multi-electrode recording system, spike discharges from ON-OFF RGCs were simultaneously recorded, and the cells’ ON and OFF responses were analyzed. It was found that the ON response characteristics, including response latency, spike count, as well as correlated activity and relative latency between pair-wise cells, were modulated by different light OFF intervals, while the OFF response characteristics were modulated by different light ON durations. Stimulus information carried by the ON and OFF responses was then analyzed, and it was found that information about different light ON durations was more carried by transient OFF response, whereas information about different light OFF intervals were more carried by transient ON response. Meanwhile, more than 80 % information about stimulus durations was carried by firing rate. These results suggest that ON-OFF RGCs are sensitive to different stimulus durations, and they can efficiently encode the information about visual stimulus duration by firing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amari, S. (2001). Information geometry on hierarchy of probability distributions. IEEE Transactions on Information Theory, 47(5), 1701–1711.

    Article  Google Scholar 

  • Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews Neuroscience, 7(5), 358–366.

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield, S. A., & Miller, R. F. (1986). A functional organization of ON and OFF pathways in the rabbit retina. Journal of Neuroscience, 6(1), 1–13.

    CAS  PubMed  Google Scholar 

  • Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nature Neuroscience, 2(11), 947–957.

    Article  CAS  PubMed  Google Scholar 

  • Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–539.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G. D. (1998). Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hearing Research, 122(1–2), 142–150.

    Article  CAS  PubMed  Google Scholar 

  • de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448(7155), 802–806.

    Article  PubMed  Google Scholar 

  • DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.

    CAS  PubMed  Google Scholar 

  • Firestein, S., Picco, C., & Menini, A. (1993). The relation between stimulus and response in olfactory receptor cells of the tiger salamander. Journal of Physiology, 468(1), 1–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gawne, T. J., Kjaer, T. W., & Richmond, B. J. (1996). Latency: another potential code for feature binding in striate cortex. Journal of Neurophysiology, 76(2), 1356–1360.

    CAS  PubMed  Google Scholar 

  • Gollisch, T., & Meister, M. (2008). Rapid neural coding in the retina with relative spike latencies. Science, 319(5866), 1108–1111.

    Article  CAS  PubMed  Google Scholar 

  • Greschner, M., Thiel, A., Kretzberg, J., & Ammermuller, J. (2006). Complex spike-event pattern of transient ON-OFF retinal ganglion cells. Journal of Neurophysiology, 96(6), 2845–2856.

    Article  PubMed  Google Scholar 

  • Ishikane, H., Gangi, M., Honda, S., & Tachibana, M. (2005). Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nature Neuroscience, 8(8), 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  • Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010a). Influence of GABAergic inhibition on concerted activity between the ganglion cells. Neuroreport, 21(12), 797–801.

    Article  CAS  PubMed  Google Scholar 

  • Jing, W., Liu, W. Z., Gong, X. W., Gong, H. Q., & Liang, P. J. (2010b). Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities. Cognitive Neurodynamics, 4(3), 179–188.

    Article  PubMed Central  PubMed  Google Scholar 

  • Latham, P. E., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. Journal of Neuroscience, 25(21), 5195–5206.

    Article  CAS  PubMed  Google Scholar 

  • Lesica, N. A., Ishii, T., Stanley, G. B., & Hosoya, T. (2008). Estimating receptive fields from responses to natural stimuli with asymmetric intensity distributions. PLoS One, 3(8), e3060.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li, H., Liu, W. Z., & Liang, P. J. (2012). Adaptation-dependent synchronous activity contributes to receptive field size change of bullfrog retinal ganglion cell. PLoS One, 7(3), e34336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, X., Zhou, Y., Gong, H. Q., & Liang, P. J. (2007). Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells. Brain Research, 1177, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W. Z., Jing, W., Li, H., Gong, H. Q., & Liang, P. J. (2011). Spatial and temporal correlations of spike trains in frog retinal ganglion cells. Journal of Computational Neuroscience, 30(3), 543–553.

    Article  PubMed  Google Scholar 

  • Mante, V., Bonin, V., & Carandini, M. (2008). Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron, 58(4), 625–638.

    Article  CAS  PubMed  Google Scholar 

  • Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76(2), 266–280.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., & Pitts, W. H. (1960). Anatomy and physiology of vision in the frog (Rana pipiens). Journal of General Physiology, 43((6)Suppl), 129–175.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meister, M., Lagnado, L., & Baylor, D. A. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207–1210.

    Article  CAS  PubMed  Google Scholar 

  • Merhav, N. (1994). On information rates for mismatched decoders. IEEE Transactions on Information Theory, 40(6), 1953–1967.

    Article  Google Scholar 

  • Mirpour, K., & Esteky, H. (2009). State-dependent effects of stimulus presentation duration on the temporal dynamics of neural responses in the inferotemporal cortex of macaque monkeys. Journal of Neurophysiology, 102(3), 1790–1800.

    Article  PubMed  Google Scholar 

  • Montemurro, M. A., Senatore, R., & Panzeri, S. (2007). Tight data-robust bounds to mutual information combining shuffling and model selection techniques. Neural Computation, 19(11), 2913–2957.

    Article  CAS  PubMed  Google Scholar 

  • Nirenberg, S., Carcieri, S. M., Jacobs, A. L., & Latham, P. E. (2001). Retinal ganglion cells act largely as independent encoders. Nature, 411(6838), 698–701.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, P., Dobbins, A. C., Gawne, T. J., Grzywacz, N. M., & Amthor, F. R. (2011). Separability of stimulus parameter encoding by on-off directionally selective rabbit retinal ganglion cells. Journal of Neurophysiology, 105(5), 2083–2099.

    Article  PubMed Central  PubMed  Google Scholar 

  • Oesch, N. W., Kothmann, W. W., & Diamond, J. S. (2011). Illuminating synapses and circuitry in the retina. Current Opinion in Neurobiology, 21(2), 238–244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oizumi, M., Ishii, T., Ishibashi, K., Hosoya, T., & Okada, M. (2010). Mismatched decoding in the brain. Journal of Neuroscience, 30(13), 4815–4826.

    Article  CAS  PubMed  Google Scholar 

  • Panzeri, S., & Treves, A. (1996). Analytical estimates of limited sampling biases in different information measures. Network, 7, 87–107.

    Article  Google Scholar 

  • Panzeri, S., Petersen, R. S., Schultz, S. R., Lebedev, M., & Diamond, M. E. (2001). The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 29(3), 769–777.

    Article  CAS  PubMed  Google Scholar 

  • Pauluis, Q., Baker, S. N., & Olivier, E. (2001). Precise burst synchrony in the superior colliculus of the awake cat during moving stimulus presentation. Journal of Neuroscience, 21(2), 615–627.

    CAS  PubMed  Google Scholar 

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rieke, F., & Rudd, M. E. (2009). The challenges natural images pose for visual adaptation. Neuron, 64(5), 605–616.

    Article  CAS  PubMed  Google Scholar 

  • Risner, M. L., Amthor, F. R., & Gawne, T. J. (2010). The response dynamics of rabbit retinal ganglion cells to simulated blur. Visual Neuroscience, 27(1–2), 43–55.

    Article  PubMed  Google Scholar 

  • Sachdev, R. N., & Catania, K. C. (2002). Effects of stimulus duration on neuronal response properties in the somatosensory cortex of the star-nosed mole. Somatosensory and Motor Research, 19(4), 272–278.

    Article  CAS  PubMed  Google Scholar 

  • Samonds, J. M., & Bonds, A. B. (2005). Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. Journal of Neurophysiology, 93(1), 223–236.

    Article  PubMed  Google Scholar 

  • Schneidman, E., Bialek, W., & Berry, M. J., 2nd. (2003). Synergy, redundancy, and independence in population codes. Journal of Neuroscience, 23(37), 11539–11553.

    CAS  PubMed  Google Scholar 

  • Schneidman, E., Berry, M. J., 2nd, Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007–1012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnitzer, M. J., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37(3), 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Shlens, J., Rieke, F., & Chichilnisky, E. (2008). Synchronized firing in the retina. Current Opinion in Neurobiology, 18(4), 396–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Straznicky, C., & Straznicky, I. T. (1988). Morphological classification of retinal ganglion cells in adult Xenopus laevis. Anatomy and Embryology (Berl), 178(2), 143–153.

    Article  CAS  Google Scholar 

  • Tanaka, H., Wong, D., & Taniguchi, I. (1992). The influence of stimulus duration on the delay tuning of cortical neurons in the FM bat, Myotis lucifugus. Journal of Comparative Physiology A, 171(1), 29–40.

    Article  CAS  Google Scholar 

  • Thiel, A., Greschner, M., & Ammermüller, J. (2006). The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. Journal of Computational Neuroscience, 21(2), 131–151.

    Article  PubMed  Google Scholar 

  • Thiel, A., Greschner, M., Eurich, C. W., Ammermuller, J., & Kretzberg, J. (2007). Contribution of individual retinal ganglion cell responses to velocity and acceleration encoding. Journal of Neurophysiology, 98(4), 2285–2296.

    Article  PubMed  Google Scholar 

  • Trong, P. K., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11(11), 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  • Usrey, W. M., & Reid, R. C. (1999). Synchronous activity in the visual system. Annual Review of Physiology, 61, 435–456.

    Article  CAS  PubMed  Google Scholar 

  • Wassle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews Neuroscience, 5(10), 747–757.

    Article  PubMed  Google Scholar 

  • Wu, S., Nakahara, H., & Amari, S. (2001). Population coding with correlation and an unfaithful model. Neural Computation, 13(4), 775–797.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, L., Jing, W., & Liang, P. J. (2011). Concerted activity and information coding in the retinal ganglion cells. Sheng Li Xue Bao, 63(5), 423–430.

    PubMed  Google Scholar 

  • Xiao, L., Zhang, D. K., Li, Y. Q., Liang, P. J., & Wu, S. (2013a). Adaptive neural information processing with dynamical electrical synapses. Frontiers in Computational Neuroscience, 7, 36.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiao, L., Zhang, M., Xing, D., Liang, P. J., & Wu, S. (2013b). Shifted encoding strategy in retinal luminance adaptation: from firing rate to neural correlation. Journal of Neurophysiology, 110, 1793–1803.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mr. Xin-Wei Gong and Hai-Qing Gong for important technical assitance. This work was supported by grants from National Foundation of Natural Science of China (No. 61075108, P.J.L.; No. 61375114, P.M.Z; No. 91132702, S.W.) and Graduate Student Innovation Ability Training Special Fund of Shanghai Jiao Tong University (L.X.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Ji Liang.

Additional information

Action Editor: Tim Gollisch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Zhang, PM., Wu, S. et al. Response dynamics of bullfrog ON-OFF RGCs to different stimulus durations. J Comput Neurosci 37, 149–160 (2014). https://doi.org/10.1007/s10827-013-0492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0492-2

Keywords

Navigation