[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Firing-rate models capture essential response dynamics of LGN relay cells

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Firing-rate models provide a practical tool for studying signal processing in the early visual system, permitting more thorough mathematical analysis than spike-based models. We show here that essential response properties of relay cells in the lateral geniculate nucleus (LGN) can be captured by surprisingly simple firing-rate models consisting of a low-pass filter and a nonlinear activation function. The starting point for our analysis are two spiking neuron models based on experimental data: a spike-response model fitted to data from macaque (Carandini et al. J. Vis., 20(14), 1–2011, 2007), and a model with conductance-based synapses and afterhyperpolarizing currents fitted to data from cat (Casti et al. J. Comput. Neurosci., 24(2), 235–252, 2008). We obtained the nonlinear activation function by stimulating the model neurons with stationary stochastic spike trains, while we characterized the linear filter by fitting a low-pass filter to responses to sinusoidally modulated stochastic spike trains. To account for the non-Poisson nature of retinal spike trains, we performed all analyses with spike trains with higher-order gamma statistics in addition to Poissonian spike trains. Interestingly, the properties of the low-pass filter depend only on the average input rate, but not on the modulation depth of sinusoidally modulated input. Thus, the response properties of our model are fully specified by just three parameters (low-frequency gain, cutoff frequency, and delay) for a given mean input rate and input regularity. This simple firing-rate model reproduces the response of spiking neurons to a step in input rate very well for Poissonian as well as for non-Poissonian input. We also found that the cutoff frequencies, and thus the filter time constants, of the rate-based model are unrelated to the membrane time constants of the underlying spiking models, in agreement with similar observations for simpler models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blitz, D.M., & Regehr, W.G. (2005). Timing and specificity of feed-forward inhibition within the L.G.N. Neuron, 45(6), 917–928.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E.N., Barbieri, R., Ventura, V., Kass, R.E., Frank, L.M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14(2), 325–346.

    Article  PubMed  Google Scholar 

  • Brunel, N., Chance, F.S., Fourcaud, N., Abbott, L.F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86(10), 2186–2189.

    Article  PubMed  CAS  Google Scholar 

  • Carandini, M., Horton, J.C., Sincich, L.C. (2007). Thalamic filtering of retinal spike trains by postsynaptic summation. Journal of Vision, 20(14), 1–2011.

    Google Scholar 

  • Casti, A., Hayot, F., Xiao, Y., Kaplan, E. (2008). A simple model of retina-LGN transmission. Journal of Computational Neuroscience, 24(2), 235–252.

    Article  PubMed  Google Scholar 

  • Chichilnisky, E.J. (2001). A simple white noise analysis of neuronal light responses. Network, 12(2), 199–213.

    PubMed  CAS  Google Scholar 

  • Cleland, B.G., Dubin, M.W., Levick, W.R. (1971). Simultaneous recording of input and output of lateral geniculate neurones. Nature New Biology, 231(23), 191–192.

    Article  PubMed  CAS  Google Scholar 

  • Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Cambridge: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Deger, M., Helias, M., Cardanobile, S., Atay, F.M., Rotter, S. (2010). Nonequilibrium dynamics of stochastic point processes with refractoriness. Physical Review E, 82(2 Pt 1), 021–129.

    Google Scholar 

  • Einevoll, G.T., & Heggelund, P. (2000). Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat. Visual Neuroscience, 17(6), 871–885.

    Article  PubMed  CAS  Google Scholar 

  • Einevoll, G.T., & Plesser, H.E. (2002). Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli. Network, 13(4), 503–530.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, J., & Bair, W. (1995). The effect of a refractory period on the power spectrum of neuronal discharge. SIAM Journal on Applied Mathematics, 55, 1074–1093.

    Article  Google Scholar 

  • Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F. (2001). GNU scientific library reference manual. Bristol: Network Theory.

    Google Scholar 

  • Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Computation, 12(1), 43–89.

    Article  PubMed  CAS  Google Scholar 

  • Gerstner, W., & Kistler, W.M. (2002). Spiking neuron models. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gewaltig, M.O., & Diesmann, M. (2007). NEST (NEural simulation tool). Scholarpedia, 2(4), 1430.

    Article  Google Scholar 

  • Goldberg, J.M., & Brown, P.B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32, 613–636.

    PubMed  CAS  Google Scholar 

  • Hayot, F., & Tranchina, D. (2001). Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Visual Neuroscience, 18(6), 865–877.

    PubMed  CAS  Google Scholar 

  • Johannesma, P.I.M. (1968). Diffusion models for the stochastic activity of neurons. In E.R. Caianiello (Ed.), Networks neural: Proceedings of the school on neural networks (pp. 116–144). Springer-Verlag.

  • Kaplan, E., & Shapley, R. (1984). The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Experimental Brain Research, 55(1), 111–116.

    Article  CAS  Google Scholar 

  • Kirkland, K.L., & Gerstein, G.L. (1998). A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vision Research, 38(13), 2007–2022.

    Article  PubMed  CAS  Google Scholar 

  • Knight, B.W. (1972). Dynamics of encoding in a population of neurons. The Journal of General Physiology, 59(6), 734–766.

    Article  PubMed  CAS  Google Scholar 

  • Köhn, J., & Wörgötter, F. (1996). Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli. Biological Cybernetics, 75(3), 199–209.

    Article  PubMed  Google Scholar 

  • Muller, E., Davison, A.P., Brizzi, T., Bruederle, D., Eppler, J.M., Kremkow, J., Pecevski, D., Perrinet, L., Schmuker, M., Yger, P. (2009). NeuralEnsemble.Org: Unifying neural simulators in Python to ease the model complexity bottleneck. In Frontiers in neuroscience conference abstract: Neuroinformatics 2009.

  • Nelder, J.A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308–313.

    Article  Google Scholar 

  • Nordbø, Ø., Wyller, J., Einevoll, G.T. (2007). Neural network firing-rate models on integral form: effects of temporal coupling kernels on equilibrium-state stability. Biological Cybernetics, 97(3), 195–209.

    Article  PubMed  Google Scholar 

  • Nordlie, E., Gewaltig, M.O., Plesser, H.E. (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5(8), e1000456.

    Article  PubMed  Google Scholar 

  • Nordlie, E., Tetzlaff, T., Einevoll, G.T. (2010). Rate dynamics of leaky integrate-and-fire neurons with strong synapses. Frontiers in Computational Neuroscience, 4, 149.

    PubMed  Google Scholar 

  • Pillow, J.W., Paninski, L., Uzzell, V.J., Simoncelli, E.P., Chichilnisky, E.J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25(47), 11003–11013.

    Article  PubMed  CAS  Google Scholar 

  • Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Plesser, H.E., & Diesmann, M. (2009). Simplicity and efficiency of integrate-and-fire neuron models. Neural Computation, 21, 353–359.

    Article  PubMed  Google Scholar 

  • Rodieck, R.W. (1965). Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research, 5(11), 583–601.

    Article  PubMed  CAS  Google Scholar 

  • Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics, 81(5–6), 381–402.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S.M., & Guillery, R.W. (2001). Exploring the thalamus. New York: Academic Press.

    Google Scholar 

  • Shimazaki, H., & Shinomoto, S. (2010). Kernel bandwidth optimization in spike rate estimation. Journal of Computational Neuroscience, 29(1–2), 171–182.

    Article  PubMed  Google Scholar 

  • Sirovich, L. (2008). Populations of tightly coupled neurons: the RGC/LGN system. Neural Computation, 20(5), 1179–1210.

    Article  PubMed  Google Scholar 

  • Troy, J.B., & Robson, J.G. (1992). Steady discharges of X and Y retinal ganglion cells of cat under photopic illuminance. Visual neuroscience, 9(6), 535–53.

    Article  PubMed  CAS  Google Scholar 

  • van Hateren, J.H. (1997). Processing of natural time series of intensities by the visual system of the blowfly. Vision Research, 37(23), 3407–3416.

    Article  PubMed  Google Scholar 

  • Walpole, R.E., & Myers, R.H. (1993). Probability and Statistics for Engineers and Scientists (5th Ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Yousif, N., & Denham, M. (2007). The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Biological Cybernetics, 97(4), 269–277.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Matteo Carandini for valuable discussions on how to replicate his model and two anonymous referees for constructive comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heiberg.

Additional information

Action Editor: David Golomb

Partially funded by the Research Council of Norway (Grant 178892/V30 eNeuro), the Helmholtz Alliance on Systems Biology, and EU Grant 269921 (BrainScaleS). Simulations were performed using NOTUR resources.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 493 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiberg, T., Kriener, B., Tetzlaff, T. et al. Firing-rate models capture essential response dynamics of LGN relay cells. J Comput Neurosci 35, 359–375 (2013). https://doi.org/10.1007/s10827-013-0456-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0456-6

Keywords

Navigation