[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Modeling the response of a population of olfactory receptor neurons to an odorant

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We modeled the firing rate of populations of olfactory receptor neurons (ORNs) responding to an odorant at different concentrations. Two cases were considered: a population of ORNs that all express the same olfactory receptor (OR), and a population that expresses many different ORs. To take into account ORN variability, we replaced single parameter values in a biophysical ORN model with values drawn from statistical distributions, chosen to correspond to experimental data. For ORNs expressing the same OR, we found that the distributions of firing frequencies are Gaussian at all concentrations, with larger mean and standard deviation at higher concentrations. For a population expressing different ORs, the distribution of firing frequencies can be described as the superposition of a Gaussian distribution and a lognormal distribution. Distributions of maximum value and dynamic range of spiking frequencies in the simulated ORN population were similar to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abraham, N. M., Spors, H., Carleton, A., Margrie, T. W., Kuner, T., & Schaefer, A. T. (2004). Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron, 44, 865–876.

    CAS  PubMed  Google Scholar 

  • Bargmann, C. I. (2006). Comparative chemosensation from receptors to ecology. Nature, 444, 295–301. doi:10.1038/nature05402.

    Article  CAS  PubMed  Google Scholar 

  • Bazhenov, M., Stopfer, M., Rabinovich, M., Abarbanel, H. D. J., Sejnowski, T. J., & Laurent, G. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron, 30, 569–581. doi:10.1016/S0896-6273(01)00286-0.

    Article  CAS  PubMed  Google Scholar 

  • Cleland, T. A., & Linster, C. (1999). Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study. Neural Computation, 11, 1673–1690. doi:10.1162/089976699300016188.

    Article  CAS  PubMed  Google Scholar 

  • Cleland, T. A., & Linster, C. (2005). Computation in the olfactory system. Chemical Senses, 30, 801–813. doi:10.1093/chemse/bji072.

    Article  PubMed  Google Scholar 

  • Christensen, T. A., D’Alessandro, G., Lega, J., & Hildebrand, J. G. (2001). Morphometric modeling of olfactory circuits in the insect antennal lobe: I. Simulations of spiking local interneurons. BioSystems, 61, 143–153.

    Google Scholar 

  • Dougherty, D. P., Wright, G. A., & Yew, A. C. (2005). Computational model of the cAMP-mediated sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neurons. Proceedings of the National Academy of Sciences of the United States of America, 102, 10415–10420. doi:10.1073/pnas.0504099102.

    Article  CAS  PubMed  Google Scholar 

  • Duchamp, A., & Sicard, G. (1984). Influence of stimulus intensity on odour discrimination by olfactory bulb neurons as compared with receptor cells. Chemical Senses, 8, 355–366. doi:10.1093/chemse/8.4.355.

    Article  Google Scholar 

  • Duchamp, A., Revial, M. F., Holley, A., & MacLeod, P. (1974). Odor discrimination by frog olfactory receptors. Chemical Senses, 1, 213–233. doi:10.1093/chemse/1.2.213.

    Article  CAS  Google Scholar 

  • Duchamp-Viret, P., Duchamp, A., & Chaput, M. A. (2003). Single olfactory receptor neurons simultaneously integrate the components of an odour mixture. The European Journal of Neuroscience, 18, 2690–2696. doi:10.1111/j.1460-9568.2003.03001.x.

    Article  PubMed  Google Scholar 

  • Friedrich, R. W., & Laurent, G. (2004). Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. Journal of Neurophysiology, 91, 2658–2669. doi:10.1152/jn.01143.2003.

    Article  PubMed  Google Scholar 

  • Grosmaître, X., Vassalli, A., Mombaerts, P., Shepherd, G. M., & Ma, M. (2006). Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 1970–1975. doi:10.1073/pnas.0508491103.

    Article  PubMed  Google Scholar 

  • Hahn, I., Scherer, P. W., & Mozell, M. M. (1994). A mass transport model of olfaction. Journal of Theoretical Biology, 167, 115–128. doi:10.1006/jtbi.1994.1057.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, J. G., & Shepherd, G. M. (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annual Review of Neuroscience, 20, 595–631. doi:10.1146/annurev.neuro.20.1.595.

    Article  CAS  PubMed  Google Scholar 

  • Imanaka, Y., & Takeuchi, H. (2001). Spiking properties of olfactory receptor cells in the slice preparation. Chemical Senses, 26, 1023–1027.

    Google Scholar 

  • Johnson, B. A., & Leon, M. (2007). Chemotopic odorant coding in a mammalian olfactory system. The Journal of Comparative Neurology, 503, 1–34. doi:10.1002/cne.21396.

    Article  CAS  PubMed  Google Scholar 

  • Kaissling, K.-E. (2001). Olfactory perireceptor and receptor events in moths: a kinetic model. Chemical Senses, 26, 125–150. doi:10.1093/chemse/26.2.125.

    Article  CAS  PubMed  Google Scholar 

  • Kostal, L., Lánský, P., & Rospars, J. P. (2008). Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Computational Biology, 4(4), e1000053. doi:10.1371/journal.pcbi.1000053.

    Article  PubMed  Google Scholar 

  • Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature Reviews. Neuroscience, 3, 884–895. doi:10.1038/nrn964.

    Article  CAS  PubMed  Google Scholar 

  • Lewcock, J. W., & Reed, R. R. (2004). A feedback mechanism regulates monoallelic odorant receptor expression. Proceedings of the National Academy of Sciences of the United States of America, 101, 1069–1074. doi:10.1073/pnas.0307986100.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural Computation, 17, 2548–2570.

    Google Scholar 

  • Mombaerts, P. (2004). Odorant receptor gene choice in olfactory sensory neurons: the one receptor - one neuron hypothesis revisited. Current Opinion in Neurobiology, 14, 31–36. doi:10.1016/j.conb.2004.01.014.

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts, P., Wang, F., Dulac, C., Chao, S. K., Nemes, A., Mendelsohn, M., et al. (1996). Visualizing an olfactory sensory map. Cell, 87, 675–686. doi:10.1016/S0092-8674(00)81387-2.

    Article  CAS  PubMed  Google Scholar 

  • Pongracz, F., Firestein, S., & Shepherd, G. M. (1991). Electrotonic structure of olfactory sensory neurons analyzed by intracellular and whole cell patch techniques. Journal of Neurophysiology, 65, 747–758.

    CAS  PubMed  Google Scholar 

  • Rospars, J.-P., & Fort, J. C. (1994). Coding of odor quality: roles of convergence and inhibition. Network. Computation in Neural Systems, 5, 121–145. doi:10.1088/0954-898X/5/2/001.

    Article  Google Scholar 

  • Rospars, J.-P., & Lánský, P. (2004). Stochastic pulse stimulation in chemoreceptors and its properties. Mathematical Biosciences, 188, 133–145. doi:10.1016/j.mbs.2003.08.001.

    Article  CAS  PubMed  Google Scholar 

  • Rospars, J.-P., Lánský, P., Tuckwell, H. C., & Vermeulen, A. (1996). Coding of odor intensity in a steady-state deterministic model of an olfactory receptor neuron. Journal of Computational Neuroscience, 3, 51–72. doi:10.1007/BF00158337.

    Article  CAS  PubMed  Google Scholar 

  • Rospars, J.-P., Lánský, P., Duchamp, A., & Duchamp-Viret, P. (2003). Relation between stimulus and response in frog olfactory receptor neurons in vivo. The European Journal of Neuroscience, 18, 1135–1154. doi:10.1046/j.1460-9568.2003.02766.x.

    Article  PubMed  Google Scholar 

  • Rospars, J.-P., Lucas, P., & Coppey, M. (2007). Modelling the early steps of transduction in insect olfactory receptor neurons. Bio Systems, 89, 101–109. doi:10.1016/j.biosystems.2006.05.015.

    CAS  PubMed  Google Scholar 

  • Rospars, J.-P., Lánský, P., Duchamp, A., & Duchamp-Viret, P. (2008). Competitive and noncompetitive odorant interactions in the early neural coding of odorant mixtures. The Journal of Neuroscience, 28, 2659–2666. doi:10.1523/JNEUROSCI.4670-07.2008.

    Article  CAS  PubMed  Google Scholar 

  • Saltelli, A. (2004). Sensitivity analysis in practice: a guide to assessing scientific models. Wiley.

  • Schaefer, A. T., & Margrie, T. W. (2007). Spatiotemporal representations in the olfactory system. Trends in Neurosciences, 30, 92–100. doi:10.1016/j.tins.2007.01.001.

    Article  CAS  PubMed  Google Scholar 

  • Serizawa, S., Miyamichi, K., Nakatani, H., Suzuki, M., Saito, M., Yoshihara, Y., et al. (2003). Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science, 302, 2088–2094. doi:10.1126/science.1089122.

    Article  CAS  PubMed  Google Scholar 

  • Shykind, B. M. (2005). Regulation of odorant receptors: one allele at a time. Human Molecular Genetics, 14, R33–R39. doi:10.1093/hmg/ddi105.

    Article  CAS  PubMed  Google Scholar 

  • Simoes de Souza, F. M., & Antunes, G. (2007). Biophysics of olfaction. Reports on Progress in Physics, 70, 451–491. doi:10.1088/0034-4885/70/3/R04.

    Article  CAS  Google Scholar 

  • Strausfeld, N. J., & Hildebrand, J. G. (1999). Olfactory systems: common design, uncommon origins? Current Opinion in Neurobiology, 9, 634–639. doi:10.1016/S0959-4388(99)00019-7.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., Takahata, M., & Sato, K. (2002). Oscillatory current responses of olfactory receptor neurons to odorants and computer simulation based on a cyclic AMP transduction model. Chemical Senses, 27, 789–801. doi:10.1093/chemse/27.9.789.

    Article  CAS  PubMed  Google Scholar 

  • Trotier, D. (1994). Intensity coding in olfactory receptor cells. Seminars in Cell Biology, 5, 47–54.

    Google Scholar 

  • Vermeulen, A., & Rospars, J.-P. (1998). Dendritic integration in olfactory sensory neurons: a steady-state analysis of how the neuron structure and neuron environment influence the coding of odor intensity. Journal of Computational Neuroscience, 5, 243–266. doi:10.1023/A:1008826827728.

    Google Scholar 

  • Wise, P. M., Miyazawa, T., Gallagher, M., & Preti, G. (2007). Human odor detection of homologous carboxylic acids and their binary mixtures. Chemical Senses, 32, 475–482. doi:10.1093/chemse/bjm016.

    Article  CAS  PubMed  Google Scholar 

  • Yang, G. C., Scherer, P. W., & Mozell, M. M. (2007). Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity. Chemical Senses, 32, 215–223. doi:10.1093/chemse/bjl047.

    Article  CAS  PubMed  Google Scholar 

  • Zufall, F., & Leinders-Zufall, T. (2000). The cellular and molecular basis of odor adaptation. Chemical Senses, 25, 473–481. doi:10.1093/chemse/25.4.473.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Network of Excellence “General Olfaction and Sensing Projects on a European Level” (GOSPEL) and by the European grant FP7 Bio-ICT convergence No. 216916 “Biologically inspired computation for chemical sensing” (Neurochem) to M.S., A.L., J.H.-K. and J.-P.R., and by the French-British grant ANR-BBSRC Sysbio 2007 “Pherosys” to J.-P.R. We thank Petr Lánský and two anonymous referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Rospars.

Additional information

Action Editor: C. Linster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandström, M., Lansner, A., Hellgren-Kotaleski, J. et al. Modeling the response of a population of olfactory receptor neurons to an odorant. J Comput Neurosci 27, 337–355 (2009). https://doi.org/10.1007/s10827-009-0147-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0147-5

Keywords

Navigation