Abstract
This paper presents work on parameter estimation methods for bursting neural models. In our approach we use both geometrical features specific to bursting, as well as general features such as periodic orbits and their bifurcations. We use the geometry underlying bursting to introduce defining equations for burst initiation and termination, and restrict the estimation algorithms to the space of bursting periodic orbits when trying to fit periodic burst data. These geometrical ideas are combined with automatic differentiation to accurately compute parameter sensitivities for the burst timing and period. In addition to being of inherent interest, these sensitivities are used in standard gradient-based optimization algorithms to fit model burst duration and period to data. As an application, we fit Butera et al.’s (Journal of Neurophysiology 81, 382–397, 1999) model of preBötzinger complex neurons to empirical data both in control conditions and when the neuromodulator norepinephrine is added (Viemari and Ramirez, Journal of Neurophysiology 95, 2070–2082, 2006). The results suggest possible modulatory mechanisms in the preBötzinger complex, including modulation of the persistent sodium current.
Similar content being viewed by others
References
Bhalla, U., & Bower, J. (1993). Exploring parameter space in detailed single neuron models: Simulations of the mitral and granule cells of the olfactory bulb. Journal of Neurophysiology 69(6), 1948–1965.
Bickmeyer, U., Heine, M., Manzke, T., & Richter, D. (2002). Differential modulation of I h by 5-HT receptors in mouse CA1 hippocampal neurons. European Journal of Neuroscience 16, 209–218.
Butera, R. J., Rinzel, J., & Smith, J. C. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology 81, 382–397.
Casey, R. (2004). Periodic orbits in neural models: Sensitivity analysis and algorithms for parameter estimation. PhD Thesis, Cornell University.
Crill, W. (1996). Persistent sodium current in mammalian central neurons. Annual Review of Physiology 58, 349–362.
Deisz, R., Fortin, G., & Zieglgansberger, W. (1991). Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. Journal of Neurophysiology 65, 371–382.
Feldman, J. L., Mitchell, G. S., & Nattie, E. E. (2003). Breathing: rhythmicity, plasticity, chemosensitivity. Annual Review of Neuroscience 26, 239–266.
Fletcher, R. (1987). Practical methods of optimization. Chichester: John Wiley and Sons.
Foster, W., Ungar, L., & Schwaber, J. (1993). Significance of conductances in Hodgkin–Huxley models. Journal of Neurophysiology 70(6), 2502–2518.
Ghigliazza, R., & Holmes, P. (2004). Minimal models of bursting neurons: How multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM Journal on Applied Dynamical Systems 3(4), 636–670.
Griewank, A. (2000). Evaluating derivatives: Principles and techniques of automatic differentiation. Philadelphia: SIAM.
Guckenheimer, J., & Meloon, B. (2000). Computing periodic orbits and their bifurcations with automatic differentiation. SIAM Journal on Scientific Computing 22(3), 951–985.
Guckenheimer, J., Tien, J. H., & Willms, A. (2005). Bifurcations in the fast dynamics of neurons: implications for bursting. In S. Coombes & P. C. Bresloff (Eds.), Bursting: the genesis of rhythm in the nervous system. New Jersey: World Scientific Publishing Co.
Haller, M., Mironov, S., Karschin, A., & Richter, D. (2001). Dynamic activation of K ATP channels in rhythmically active neurons. Journal of Physiology 537(1), 69–81.
Hayes, R., Byrne, J., Cox, S., & Baxter, D. (2005). Estimation of single-neuron model parameters from spike train data. Neurocomputing 65, 517–529.
Hille, B. (2001). Ion channels of excitable membranes., (3rd ed.). Sunderland, MA: Sinauer.
Hindmarsh, J., & Rose, R. (1984). A model of neuronal bursting using 3 coupled 1st order differential equations. Proceedings of the Royal Society of London Series B 221(1222), 87–102.
Johnson, S., Smith, J., Funk, G., & Feldman, J. (1994). Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. Journal of Neurophysiology 72, 2598–2608.
Jones, C. K. R. T. (1995). Geometric singular perturbation theory. Lecture Notes in Mathematics 1609, 44–118.
Kinkead, R., Bach, K., Johnson, S., Hodgeman, B., & Mitchell, G. (2001). Plasticity in respiratory motor control: Intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comparative Biochemistry and Physiology A. Molecular and Integrative Physiology 130, 207–218.
Koshiya, N., & Smith, J. C. (1999). Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363.
Magistretti, J., & Alonso, A. (1999). Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons. Journal of General Physiology 114, 491–509.
Mironov, S., Hartelt, N., & Ivannikov, M. (2005). Mitochondrial K ATP channels in respiratory neurons and their role in hypoxic facilitation of rhythmic activity. Brain Research 1033, 20–27.
Onimaru, H., Arata, A., & Homma, I. (1989). Firing properties of respiratory rhythm generating neurons in the absence of synaptic transmission in rat medulla in vitro. Experimental Brain Research 76, 530–536.
Phipps, E. T. (2003). Taylor series integration of differential-algebraic equations: Automatic differentiation as a tool for simulating rigid body mechanical systems. Ph.D. Thesis, Cornell University.
Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons. Journal of Neurophysiology 90, 3998–4015.
Richter, D., Manzke, T., Wiklen, B., & Ponimaskin, E. (2003). Serotonin receptors: Guardians of stable breathing. Trends in Molecular Medicine 9(12), 542–548.
Rinzel, J., & Lee, Y. S. (1987). Dissection of a model for neuronal parabolic bursting. Journal of Mathematical Biology 25, 653–675.
Rybak, I. A., Shevtsova, N. A., Ptak, K., & McCrimmon, D. R. (2004). Intrinsic bursting activity in the pre-Bötzinger complex: Role of persistent sodium and potassium currents. Biological Cybernetics 90, 59–74.
Sherman, A., Rinzel, J., & Keizer, J. (1988). Emergence of organized bursting in clusters of pancreatic beta cells by channel sharing. Biophysical Journal 54, 411–425.
Smith, J., Ellenberger, H., Ballanyi, K., Richter, D., & Feldman, J. (1991). Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729.
Tabak, J., Murphey, C., & Moore, L. (2000). Parameter estimation methods for single neuron models. Journal of Computational Neuroscience 9(3), 215–236.
Terman, D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics 51(5), 1418–1450.
Thoby-Brisson, M., Cauli, B., Champagnat, J., Fortin, G., & Katz, D. (2003). Expression of functional tyrosine kinase B receptors by rhythmically active respiratory neurons in the preBotzinger complex of neonatal mice. Journal of Neuroscience 23(20), 7685–7689.
Tien, J. H. (2007). Optimization for bursting neural models. Ph.D. Thesis, Cornell University.
Vanier, M. C., & Bower, J. M. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of Computational Neuroscience 7, 149–171.
Viemari, J., & Ramirez, J. (2006). Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. Journal of Neurophysiology 95(4), 2070–2082.
Washburn, C., Bayliss, D., & Guyenet, P. (2003). Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respiratory Physiology and Neurobiology 138, 19–35.
Washburn, C., Sirois, J., Talley, E., Guyenet, P., & Bayliss, D. (2002). Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH-and halothane-sensitive K + conductance. Journal of Neuroscience 22(4), 1256–1265.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Nicolas Brunel
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tien, J.H., Guckenheimer, J. Parameter estimation for bursting neural models. J Comput Neurosci 24, 358–373 (2008). https://doi.org/10.1007/s10827-007-0060-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-007-0060-8