Abstract
To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a “glial-endothelial” buffer system. Ion channels for Na+, K+, Ca2+ and Cl− , ion antiport 3Na/Ca, and “active” ion pumps were represented in the neuron membrane. The glia had “leak” conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+]o) activated persistent Na+ current (I Na,P). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient I Na,P to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+]o accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+]o and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue.
Similar content being viewed by others
References
Aitken PG, Borgdorff AJ, Juta AJA, Kiehart DP, Somjen GG, Wadman WJ (1998) Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons. Eur. J. Physiol. 436: 991–998.
Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J. Neurosci. 22: 1042–1053.
Amzica F, Steriade M (2000) Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J. Neurosci. 20: 6648–6665.
Anderson WW, Lewis DV, Swartzwelder HS, Wilson WA (1986) Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 398: 215–219.
Ashcroft FM (2000) Ion Channels and Disease. Academic Press, San Diego.
Azouz R, Jensen MS, Yaari Y (1996) Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J. Physiol. 492: 211–223.
Baker DA, Xi Z-X, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 22: 9134–9141.
Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (203 Hz) in vivo neocortical paroxysmal oscillations. J. Neurophysiol. 92: 1116–1132.
Beck H, Steffens R, Elger CE, Heinemann U (1998) Voltage-dependent Ca2+ currents in epilepsy. Epilepsy Res. 32: 321–332.
Benninger C, Kadis J, Prince DA (1980) Extracellular calcium and potassium changes in hippocampal slices. Brain Res. 187: 165–182.
Betz AL (1985) Epithelial properties of brain capillary endothelium. Feder. Proc. 44: 2614–2615.
Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79: 763–780.
Borck C, Jefferys JGR (1999) Seizure-like events in disinhibited ventral slices of adult rat hippocampus. J. Neurophysiol. 82: 2130–2142.
Borgdorff AJ (2002) Calcium dynamics in hippocampal neurones. Thesis, University of Amsterdam, Amsterdam.
Borg-Graham LJ (1999) Interpretation of data and mechanisms for hippocampal pyramidal cell models. In: PS Ulinski, EG Jones, A Peters, eds. Models of Cortical Circuits, Cerebral Cortex, vol. 13. Plenum Press, New York, pp. 19–138.
Bradbury MWB, Stulcova B (1970) Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J. Physiol. 208: 415–430.
Buchhalter JR (2000) Inherited epilepsies. In: SM Pulst, ed. Neurogenetics. Oxford University Press, New York, pp. 335–350.
Calvin WH, Sypert GW (1976) Fast and slow pyramidal tract neurons: An analysis of their contrasting repetitive firing properties in the cat. J. Neurophysiol. 39: 420–434.
Chen KC, Nicholson C (2000) Spatial buffering of potassium ions in brain extracellular space. Biophys. J. 78: 2776–2797.
Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13: 99–104.
Connors BW, Telfeian AE (2002) Dynamic properties of cells, synapses, circuits and seizures in neocortex. Adv. Neurol. 84: 141–152.
Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275: H301–H321.
Crill WE (1996) Persistent sodium current in mammalian neurons. Annu. Rev. Physiol. 58: 349–362.
Crill WE, Schwindt PC (1986) Role of persistent inward and outward membrane currents in epileptiform bursting in mammalian neurons. In: AV Delgado-Escueta, AA Ward, DM Woodbury, RJ Porter, eds. Basic Mechanisms of the Epilepsies. Raven Press, New York, pp 225–233.
Crowder JM, Croucher MJ, Bradford HF, Collins JF (1987) Excitatory amino acid receptors and depolarization-induced Ca2+ influx into hippocampal slices. J. Neurochem. 48: 1917–1924.
Dichter MA, Herman CJ, Selzer M (1972) Silent cells during interictal discharges and seizures in hippocampal penicillin foci. Evidence for the role of extracellular K+ in the transition from the interictal state to seizures. Brain Res. 48: 173–183.
Dietzel I, Heinemann U, Lux HD (1989) Relations between slow extracellular potential changes, glial potassium buffering and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2: 25–44.
Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420: 173–178.
Feldberg W, Sherwood SL (1957) Effects of calcium and potassium injected into the cerebral ventricles of the cat. J. Physiol. 139: 408–416.
Fertziger AP, Ranck JB (1970) Potassium accumulation in interstitial space during epileptiform seizures. Exp. Neurol. 26: 571–585.
Fisher RS, Pedley TA, Moody WJ, Prince DA (1976) The role of extracellular potassium in hipocampal epilepsy. Arch. Neurol. 33: 76–83.
Franceschetti S, Guatteo E, Panzica F, Sancini G, Wanke E, Avanzini G (1995) Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex. Brain Res. 696: 127–139.
French CR, Sah P, Buckett KJ, Gage PW (1990) A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol. 95: 1139–1157.
Fujikawa DG, Kim JS, Daniels AH, Alcaraz AF, Sohn TB (1996) In vivo elevation of extracellular potassium in the rat amygdala increases extracellular glutamate and aspartate and damages neurons. Neuroscience 74: 695–706.
Gloor P, Vera CL, Sperti L, Ray SN (1961) Investigation on the mechanism of epileptic discharge in the hippocampus. Epilepsia 2: 42–62.
Glötzner F, Grüsser OJ (1968) Membranpotential und Entladungsfolgen corticaler Zellen, EEG und corticales DC-Potential bei generalisierten Krampfanfällen. Arch. Psychat. Ztschr. ges. Neurol. 210: 313–339.
Green JD (1964) The hippocampus. Physiol. Rev. 44: 561–608.
Green JD, Maxwell DS (1961) Hippocampal electrical activity I. Morphological aspects. Electroenceph. Clin. Neurophysiol. 13: 837–846.
Green JD, Petsche H (1961) Hippocampal electrical activity. IV. Abnormal electrical activity. Electroenceph. Clin. Neurophysiol. 13: 868–879.
Gutnick MJ, Connors BW, Prince DA (1982) Mechanisms of neocortical epileptogenesis in vitro. J. Neurophysiol. 48: 1321–1335.
Hablitz JJ (1984) Picrotoxin-induced epileptiform activity in hippocampus: Role of endogenous versus synaptic factors. J. Neurophysiol. 51: 1011–1027.
Hablitz JJ, Heinemann U, Lux H-D (1986) Step reductions in extracellular Ca2+ activate a transient inward current in chick dorsal root ganglion cells. Biophys. J. 50: 753–757.
Hammarström AKM, Gage PW (1998) Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J. Physiol. 510: 735–741.
Hammarström AKM, Gage PW (2000) Oxygen-sensing persistent sodium channels in rat hippocampus. J. Physiol. 529: 107–118.
Heinemann U, Lux HD (1977) “Ceiling” of stimulus induced rises in extracellular potassium concentration in cerebral cortex of cats. Brain Res. 120: 231–250.
Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27: 237–243.
Heinemann U, Lux HD, Gutnick MJ (1978) Changes in extracellular free calcium and potassium activity in the somatosensory cortex of cats. In: N Chalazonitis, M Boisson, eds. Abnormal Neuronal Discharges. Raven Press, New York, pp. 329–345.
Hille B (2001) Ionic Channels of Excitable Membranes. Sinauer Associates, New York.
Hines M, Carnevale NT (1997) The NEURON simulation environment. Neural. Comput. 9: 1179–1209.
Hochman DW, Baraban SC, Owens WM, Schwartzkroin PA (1995) Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 270: 99–101.
Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68: 1373–1383.
Jefferys JGR, Haas HL (1982) Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450.
Jensen MS, Yaari Y (1997) Role of intrinsic burst firing, potassium accumulation and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol. 77: 1224–1233.
Jing J, Aitken PG, Somjen GG (1994) Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. J. Neurophysiol. 71: 2548–2551.
Jung R, Tönnies JF (1950) Hirnelektrische Untersuchungen über Entstehung und Erhaltung von Krampfenladungen: die Vorgänge am Reizort und die Brensfähigkeit des Gehirns. Arch. Psychiat. Ztschr. Neurol. 185: 701–735.
Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J. Neurophysiol. 84: 495–512.
Kager H, Wadman WJ, Somjen GG (2001) Simulation of membrane current and ion concentrations in a neuron predicts epileptiform discharge and spreading depression (SD). Soc. Neurosci. Abstr. 27: 559–553.
Kager H, Wadman WJ, Somjen GG (2002a) Conditions for the triggering of spreading depression studied with computer simulations. J. Neurophysiol. 88: 2700–2712.
Kager H, Wadman WJ, Somjen GG (2002b) Ion currents and ion fluxes responsible for self-sustained and self-limiting tonic seizure-like discharge in a neuron mode. Soc. Neurosci. Abstr. 602–607.
Kandel ER (1964) Electrical properties of hypothalamic neuroendocrine cells. J. Gen. Physiol. 47: 691–717.
Kandel ER, Spencer WA (1961) The pyramidal cells during hippocampal seizure. Epilepsia 2: 63–69.
Karst H, Joëls M, Wadman WJ (1993) Low-threshold calcium current in dendrites of the adult rat hippocampus. Neurosci. Lett. 164: 154–158.
Ketelaars SOM, Gorter JA, van Vliet EA, Lopes da Silva FH, Wadman WJ (2001) Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post-status epilepticus model of epilepsy. Neuroscience 105: 109–120.
Köhling R, Straub H, Speckmann E-J (2000) Differential involvement of L-type calcium channels in epileptogenesis of rat hippocampal slices during ontogenesis. Neurobiol. Dis. 7: 471–482.
Konnerth A, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. J. Neurophysiol. 56: 409–423.
Korn SJ, Giacchino JL, Chamberlin NL, Dingledine R (1987) Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J. Neurophysiol. 57: 325–340.
Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Erg. Physiol. 57: 1–90.
Loiseau P, Seizure precipitants (1998) In: J Engel, TA Pedley, eds. Epilepsy. A Comprehensive Textbook. Lippincott-Raven, Philadelphia, pp. 93–97.
Lopantsev V, Avoli M (1998) Laminar organization of epileptiform discharges in the rat entorhinal cortex in vitro. J. Physiol. 509: 785–796.
Lux HD (1973) Kaliumaktivität im Hirngewebe. Untersuchungen zum Krampfproblem. Mitteilungen Max Planck Gesellsch. 1: 34–52.
Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. In: AV Delgado-Escueta, AA Ward, DM Woodbury, RJ Porter, eds. Basic Mechanisms of the Epilepsies. Molecular and Cellular Approaches. Raven Press, New York, pp. 619–639.
Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J. Neurophysiol. 77: 1679–1696.
Magee JC, Hoffman D, Colbert C, Johnston D (1998) Electrical and calcium signaling in dendrites of hippocampal pyramidel neurons. Ann. Rev. Physiol. 60: 327–346.
McBain CJ, Traynelis SF, Dingledine R (1990) Regional variation of extracellular space in the hippocampus. Science 249: 674–677.
McCormick DA, Connors BW Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54: 782–806.
McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay cells. J. Neurophysiol. 68: 1384–1400.
Mazel T, Šimonová Z, Syková E (1998) Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport 9: 1299–1304.
Migliore M, Cook E, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J. Neurophysiol. 73: 1157–1168.
Mitzdorf U (1985) Current source density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65: 37–100.
Nadkarni S, Jung P (2004) Dressed neurons: modeling neural-glial interactions. Physical. Biol. 1: 35–41.
Neckelmann D, Amzica F, Steriade M (2000) Changes in neuronal conductance during different components of cortically generated spike-wave seizures. Neuroscience 96: 475–485.
Newman EA (1995) Glial cell regulation of extracellular potassium. In: H Kettenman, BR Ransom, eds. Neuroglia. Oxford University Press, New York, pp. 717–731.
Oakley JC, Sypert GW, Ward AA (1972) Conductance changes in neocortical propagated seizure: Seizure termination. Exper. Neurol. 37: 300–311.
Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29: 788–806.
Pedley TA, Fisher RS, Futamachi KJ, Prince DA (1976) Regulation of extracellular potassium concentration in epileptogenesis. Feder. Proc. 35: 1254–1259.
Phillis JW, Perkins LM, O'Regan MH (1993) Potassium-evoked efflux of transmitter amino acids and purines from rat cerebral cortex. 31: 547–552.
Prince DA, Schwartzkroin PA (1978) Nonsynaptic mechanisms in epileptogenesis. In: N Chalazonitis, M Boisson, eds. Abnormal Neuronal Discharges. Raven Press, New York, pp. 1–12.
Pumain R, Menini C, Heinemann U, Louvel J, Silva-Barrat C (1985) Chemical transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp. Neurol. 89: 250–258.
Puranam RS, McNamara JO (2001) Epilepsy and all that jazz. Nat. Med. 7: 1103–1105.
Rhodes TH, Lossin C, Vanoye CG, Wang DW, George AL (2004) Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. Proc. Natl. Acad. Sci. USA 101: 11147–11152.
Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. The Neuroscientist 8: 254–267.
Somjen GG (2004) Ions in the Brain: Normal Function, Seizures and Stroke. Oxford University Press, New York.
Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1985) Sustained potential shifts and paroxysmal discharges in hippocampal formation. J. Neurophysiol. 53: 1079–1097.
Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1986) Interstitial ion concentrations and paroxysmal discharges in hippocampal formation and spinal cord. In: AV Delgado-Escueta, AA Ward, DM Woodbury, RJ Porter, eds. Basic Mechanisms of the Epilepsies. Raven Press, New York, pp 663–680.
Somjen GG, Giacchino JL (1985) Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. J. Neurophysiol. 53: 1098–1108.
Somjen GG, Kager H, Wadman WJ (in revision, a) Computer study of the effects of ion fluxes on neuron function and of K+ mediated neuron-glia interaction. J. Comput. Neurosci.
Somjen GG, Kager H, Wadman WJ (in revision, b) Calcium sensitive non-selective cation current promotes seizure-like discharge and spreading depression in a model neuron. J. Comput. Neurosci.
Somjen GG, Müller M (2000) Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 885: 102–110.
Spampanato J, Aradi I, Soltész I, Goldin AL (2004) Increased neuronal firing in computational simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus. J. Neurophysiol. 91: 2040–2050.
Steinhäuser C, Tennigkeit M, Matthies H, Gündel J (1990) Properties of the fast sodium channels in pyramidal neurones isolated from the CA1 and CA3 areas of the hippocampus of postnatal rats. Pflügers. Arch. 415: 756–761.
Steriade M, Amzica F, Neckelmann D, Timofeev I (1998) Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J. Neurophysiol. 80: 1456–1479.
Stringer JL, Lothman EW (1989) Maximal dentate gyrus activation: characteristics and alterations after repeated seizures. J. Neurophysiol. 62: 136–143.
Swenson AM, Bean BP (2003) Ionic mechanisms of burst firing in dissociated Purkinje neurons. J. Neurosci. 23: 9650–9663.
Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348: 443–446.
Timofeev I, Grenier F, Steriade M (2004) Contributions of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. J. Neurophysiol. 92: 1133–1143.
Traub RD, Dingledine R (1990) Model of synchronized epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice. Role of spontaneous EPSPs in initiation. J. Neurophysiol. 64: 1009–1018.
Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J. Physiol. 481: 79–95.
Traub RD, Jefferys JGR (1998) Epilepsy in vitro: Electrophysiology and computer modeling. In: J Engel Jr, TA Pedley, eds. Epilepsy. A Comprehensive Textbook, vol. 1. Lippincott-Raven, Philadelphia, pp. 405–418.
Traub RD, Jefferys JGR, Whittington MA (1999) Functionally relevant and functionally disruptive (epileptic) synchronized oscillations in brain slices. Adv. Neurol. 79: 709–724.
Traub RD, Llinas R (1979) Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis. J. Neurophysiol. 42: 476–496.
Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66: 635–650.
Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59: 259–276.
Vreugdenhil M, Faas GC, Wadman WJ (1998) Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis. Neuroscience 86: 99–107.
Vreugdenhil M, Wadman WJ (1994) Kindling-induced long-lasting enhancement of calcium current in hippocampal CA1 area of the rat: relation to calcium-dependent inactivation. Neuroscience 59: 105–114.
Wadman WJ, Juta AJA, Kamphuis W, Somjen GG (1992) Current source density of sustained potential shifts associated with electrographic seizures and with spreading depression in rat hippocampus. Brain Res. 570: 85–91.
Wong RKS, Prince DA (1978) Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res. 159: 385–390.
Wyler AR, Ward AA (1980) Epileptic neurons. In: JS Lockard, AA Ward, eds. Epilepsy: Window to Brain Mechanisms. Raven Press, New York, pp. 51–68.
Xiong ZG, Lu WY, MacDonald JF (1997) Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc. Natl. Acad. Sci. USA 94: 7012–7017.
Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J. Neurophysiol. 56: 424–438.
Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp. Brain Res. 51: 153–156.
Zuckermann EC, Glaser GH (1968) Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp. Neurol. 20: 87–110.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: David Terman
Rights and permissions
About this article
Cite this article
Kager, H., Wadman, W.J. & Somjen, G.G. Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 22, 105–128 (2007). https://doi.org/10.1007/s10827-006-0001-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-006-0001-y