[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improvement of terahertz photoconductive antennas array using crossfingers structure

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The purpose of this research is to improve terahertz photoconductive antenna arrays to enhance their output power. The improved arrays were designed based on crossfingers structure as a high power terahertz generator. The finite difference time domain method was used for modelling and simulating of the generator. The characteristics of the improved array and its emphasis points and key parameters were studied. This structure demonstrated that the terahertz antenna array can generate drastically increased terahertz field amplitudes compared to other structures. The output power of the improved array enhanced as large as 74.1 µW. The improved array remains in an unsaturated region of operation, whereas the optical pumping with high power level and beam focus was used for its excitation. The improved array enhances the terahertz output power for use in extensive terahertz science and technology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeon, T.I., Grischkowsky, D.: Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Appl. Phys. Lett. 72, 3032–3034 (1998)

    Article  Google Scholar 

  2. Hashimshony, D., et al.: Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. J Appl. Phys. 90, 5778–5781 (2001)

    Article  Google Scholar 

  3. Kiwa, T., et al.: Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Opt. Lett. 28, 2058–2060 (2003)

    Article  Google Scholar 

  4. Hasegawa, N., et al.: Remote identification of protrusions and dents on surfaces by terahertz reflectometry with spatial beam filtering and out-of-focus detection. Appl. Phys. Lett. 83, 3996–3998 (2003)

    Article  Google Scholar 

  5. Yamashita, M., et al.: Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope. Appl. Phys. Lett. 93, 2008–2010 (2008)

    Google Scholar 

  6. Lee YS. Principles of Terahertz Science and Technology. Springer; (2009). ISBN 9780387095394.

  7. Yamashita, M., et al.: THz emission characteristics from p/n junctions with metal lines under non-bias conditions for LSI failure analysis. Opt. Express 19, 10864–10873 (2011)

    Article  Google Scholar 

  8. Minkevičius, L., et al.: Detection of tab wire soldering defects on silicon solar cells using terahertz time-domain spectroscopy. Electron. Lett. 48, 932 (2012)

    Article  Google Scholar 

  9. Burford, N.M., et al.: Terahertz imaging for nondestructive evaluation of packaged power electronic devices. Int. J Emerg. Technol. Adv. Eng. 4, 395–401 (2014)

    Google Scholar 

  10. Ospald, F., et al.: Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. Opt. Eng. 53, 031208 (2013)

    Article  Google Scholar 

  11. Ajayan, J., Nirmal, D., Ravichandran, T., Mohankumar, P., Prajoon, P., Arivazhagan, L., et al.: InP high electron mobility transistors for submillimetre wave and terahertz frequency applications: a review. AEU Int. J. Electron. Commun. 94, 199–214 (2018)

    Article  Google Scholar 

  12. Burford NM, El-Shenawee MO (2017) Review of terahertz photoconductive antenna technology. Opt. Eng. 56(1):010901(-1)–010901(-20).

  13. Biabanifard, M., Sadegh, A.M.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 95, 256–263 (2018)

    Article  Google Scholar 

  14. Exter, M.V., Grischkowsky, D.R.: Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990)

    Article  Google Scholar 

  15. Lepeshov, S., Gorodetsky, A., Krasnok, A., Rafailov, E., Belov, P.: Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photon Rev. 11(1), 1600199 (2017)

    Article  Google Scholar 

  16. Bahk, Y.M., Han, S., Rhie, J., Park, J., Jeon, H., Park, N., et al.: Ultimate terahertz field enhancement of single nanoslits. Phys. Rev. B 95, 075424 (2017)

    Article  Google Scholar 

  17. Zangeneh, H.R., Moradiannejad, F.: Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide. J. Comput. Electron 17(1), 463–469 (2018)

    Article  Google Scholar 

  18. Graber B, Wu DH, Kim C. High power terahertz fields generated by an arrayed photoconductive antenna structure. Am Phys Soc (APS) March Meet 2016.

  19. Winnerl, S., et al.: Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes. IEEE J Sel. Top. Quantum Electron. 14, 449–457 (2008)

    Article  Google Scholar 

  20. Preu, S., et al.: 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters. Appl. Phys. Lett. 101, 101105 (2012)

    Article  Google Scholar 

  21. Mittendorff, M., et al.: Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAsheterostructure. Nanotechnology 24, 214007 (2013)

    Article  Google Scholar 

  22. Dreyhaupt, A., et al.: High-intensity terahertz radiation from a microstructured large-area photoconductor. Appl. Phys. Lett. 86, 121114 (2005)

    Article  Google Scholar 

  23. Peter, F., et al.: Coherent terahertz detection with a large-area photoconductive antenna. Appl. Phys. Lett. 91, 1–4 (2007)

    MathSciNet  Google Scholar 

  24. Beck, M., et al.: Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Opt. Express 18, 9251–9257 (2010)

    Article  Google Scholar 

  25. Winnerl, S.: Scalable microstructured photoconductive terahertz emitters. J Infrared Millimeter Terahertz Waves. 33, 431–454 (2012)

    Article  Google Scholar 

  26. Heshmat, B., Pahlevaninezhad, H., et al.: Nanoplasmonic Terahertz photoconductive switch on GaAs. NanoLett. 12, 6255–6259 (2012)

    Article  Google Scholar 

  27. Awad, M., et al.: Characterization of low temperature GaAs antenna array terahertz emitters. Appl. Phys. Lett. 91, 181124 (2007)

    Article  Google Scholar 

  28. Brown, E., et al.: Photomixing up to 3.8 THz in low-temperaturegrownGaAs. Appl. Phys. Lett. 66, 285–287 (1995)

    Article  Google Scholar 

  29. Zangeneh, H.R., Moradiannejad, F.: High power T-ray generation using a new array of photoconductive antennas. AEU Int. J. Electron. Commun. 107, 215–220 (2019)

    Article  Google Scholar 

  30. Bashirpour, M., Kolahdouz, M., Neshat, M.: Enhancement of optical absorption in LT-GaAs by double layer nanoplasmonic array in photoconductive antenna. Vacuum 146, 430–436 (2017)

    Article  Google Scholar 

  31. Tani, M., Matsuura, S., Sakai, K., Nakashima, S.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36(30), 7853–7859 (1997)

    Article  Google Scholar 

  32. Auston, D.H.: Subpicosecond electro-optic shock waves. Appl. Phys. Lett. 43, 713–715 (1983)

    Article  Google Scholar 

  33. Auston, D.H., Cheung, K.P., Smith, P.R.: Picosecond photoconductingHertzian dipoles. Appl. Phys. Lett. 45, 284–286 (1984)

    Article  Google Scholar 

  34. Auston, D.H., et al.: Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984)

    Article  Google Scholar 

  35. Smith, P.R., Auston, D.H., Nuss, M.C.: Subpicosecondphotoconducting dipole antennas. IEEE J. Quantum Electron. 24, 255–260 (1988)

    Article  Google Scholar 

  36. Jepsen, P.U., Jacobsen, R.H., Keiding, S.R.: Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B. 13, 2424 (1996)

    Article  Google Scholar 

  37. Němec, H., et al.: Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy. J. Appl. Phys. 90, 1303–1306 (2001)

    Article  Google Scholar 

  38. Kessi, F., Naima, H.: Open Z-scan analytical model for multiphoton absorption. J. Opt. 49, 305–310 (2020)

    Article  Google Scholar 

  39. Kim, D.S., Citrin, D.S.: Coulomb and radiation screening in photoconductive terahertz sources. Appl. Phys. Lett. 88, 161117 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Moradiannejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradiannejad, F. Improvement of terahertz photoconductive antennas array using crossfingers structure. J Comput Electron 20, 922–927 (2021). https://doi.org/10.1007/s10825-021-01661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01661-3

Keywords