Abstract
The purpose of this research is to improve terahertz photoconductive antenna arrays to enhance their output power. The improved arrays were designed based on crossfingers structure as a high power terahertz generator. The finite difference time domain method was used for modelling and simulating of the generator. The characteristics of the improved array and its emphasis points and key parameters were studied. This structure demonstrated that the terahertz antenna array can generate drastically increased terahertz field amplitudes compared to other structures. The output power of the improved array enhanced as large as 74.1 µW. The improved array remains in an unsaturated region of operation, whereas the optical pumping with high power level and beam focus was used for its excitation. The improved array enhances the terahertz output power for use in extensive terahertz science and technology applications.
Similar content being viewed by others
References
Jeon, T.I., Grischkowsky, D.: Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Appl. Phys. Lett. 72, 3032–3034 (1998)
Hashimshony, D., et al.: Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. J Appl. Phys. 90, 5778–5781 (2001)
Kiwa, T., et al.: Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits. Opt. Lett. 28, 2058–2060 (2003)
Hasegawa, N., et al.: Remote identification of protrusions and dents on surfaces by terahertz reflectometry with spatial beam filtering and out-of-focus detection. Appl. Phys. Lett. 83, 3996–3998 (2003)
Yamashita, M., et al.: Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope. Appl. Phys. Lett. 93, 2008–2010 (2008)
Lee YS. Principles of Terahertz Science and Technology. Springer; (2009). ISBN 9780387095394.
Yamashita, M., et al.: THz emission characteristics from p/n junctions with metal lines under non-bias conditions for LSI failure analysis. Opt. Express 19, 10864–10873 (2011)
Minkevičius, L., et al.: Detection of tab wire soldering defects on silicon solar cells using terahertz time-domain spectroscopy. Electron. Lett. 48, 932 (2012)
Burford, N.M., et al.: Terahertz imaging for nondestructive evaluation of packaged power electronic devices. Int. J Emerg. Technol. Adv. Eng. 4, 395–401 (2014)
Ospald, F., et al.: Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. Opt. Eng. 53, 031208 (2013)
Ajayan, J., Nirmal, D., Ravichandran, T., Mohankumar, P., Prajoon, P., Arivazhagan, L., et al.: InP high electron mobility transistors for submillimetre wave and terahertz frequency applications: a review. AEU Int. J. Electron. Commun. 94, 199–214 (2018)
Burford NM, El-Shenawee MO (2017) Review of terahertz photoconductive antenna technology. Opt. Eng. 56(1):010901(-1)–010901(-20).
Biabanifard, M., Sadegh, A.M.: Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 95, 256–263 (2018)
Exter, M.V., Grischkowsky, D.R.: Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990)
Lepeshov, S., Gorodetsky, A., Krasnok, A., Rafailov, E., Belov, P.: Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photon Rev. 11(1), 1600199 (2017)
Bahk, Y.M., Han, S., Rhie, J., Park, J., Jeon, H., Park, N., et al.: Ultimate terahertz field enhancement of single nanoslits. Phys. Rev. B 95, 075424 (2017)
Zangeneh, H.R., Moradiannejad, F.: Confinement of generated terahertz waves between two metal surfaces by a nanowaveguide. J. Comput. Electron 17(1), 463–469 (2018)
Graber B, Wu DH, Kim C. High power terahertz fields generated by an arrayed photoconductive antenna structure. Am Phys Soc (APS) March Meet 2016.
Winnerl, S., et al.: Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes. IEEE J Sel. Top. Quantum Electron. 14, 449–457 (2008)
Preu, S., et al.: 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters. Appl. Phys. Lett. 101, 101105 (2012)
Mittendorff, M., et al.: Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAsheterostructure. Nanotechnology 24, 214007 (2013)
Dreyhaupt, A., et al.: High-intensity terahertz radiation from a microstructured large-area photoconductor. Appl. Phys. Lett. 86, 121114 (2005)
Peter, F., et al.: Coherent terahertz detection with a large-area photoconductive antenna. Appl. Phys. Lett. 91, 1–4 (2007)
Beck, M., et al.: Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Opt. Express 18, 9251–9257 (2010)
Winnerl, S.: Scalable microstructured photoconductive terahertz emitters. J Infrared Millimeter Terahertz Waves. 33, 431–454 (2012)
Heshmat, B., Pahlevaninezhad, H., et al.: Nanoplasmonic Terahertz photoconductive switch on GaAs. NanoLett. 12, 6255–6259 (2012)
Awad, M., et al.: Characterization of low temperature GaAs antenna array terahertz emitters. Appl. Phys. Lett. 91, 181124 (2007)
Brown, E., et al.: Photomixing up to 3.8 THz in low-temperaturegrownGaAs. Appl. Phys. Lett. 66, 285–287 (1995)
Zangeneh, H.R., Moradiannejad, F.: High power T-ray generation using a new array of photoconductive antennas. AEU Int. J. Electron. Commun. 107, 215–220 (2019)
Bashirpour, M., Kolahdouz, M., Neshat, M.: Enhancement of optical absorption in LT-GaAs by double layer nanoplasmonic array in photoconductive antenna. Vacuum 146, 430–436 (2017)
Tani, M., Matsuura, S., Sakai, K., Nakashima, S.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36(30), 7853–7859 (1997)
Auston, D.H.: Subpicosecond electro-optic shock waves. Appl. Phys. Lett. 43, 713–715 (1983)
Auston, D.H., Cheung, K.P., Smith, P.R.: Picosecond photoconductingHertzian dipoles. Appl. Phys. Lett. 45, 284–286 (1984)
Auston, D.H., et al.: Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984)
Smith, P.R., Auston, D.H., Nuss, M.C.: Subpicosecondphotoconducting dipole antennas. IEEE J. Quantum Electron. 24, 255–260 (1988)
Jepsen, P.U., Jacobsen, R.H., Keiding, S.R.: Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Am. B. 13, 2424 (1996)
Němec, H., et al.: Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy. J. Appl. Phys. 90, 1303–1306 (2001)
Kessi, F., Naima, H.: Open Z-scan analytical model for multiphoton absorption. J. Opt. 49, 305–310 (2020)
Kim, D.S., Citrin, D.S.: Coulomb and radiation screening in photoconductive terahertz sources. Appl. Phys. Lett. 88, 161117 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Moradiannejad, F. Improvement of terahertz photoconductive antennas array using crossfingers structure. J Comput Electron 20, 922–927 (2021). https://doi.org/10.1007/s10825-021-01661-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-021-01661-3