Abstract
This study demonstrates the high capabilities of data mining and the random forest (RF) machine learning technique for processing experimental data in the field of laser equipment and technology and extracting significant information from these. The subject of study is the copper bromide vapor laser, used as a brightness amplifier and as an active medium in active optical systems actively developed in recent years. Published data from 465 experiments on this type of laser are statistically examined. RF regression models are built to predict the output power as a basic laser characteristic. The dependence of the output power on the input electric power, the pulse repetition frequency, the pressure of the additional gases in the discharge, and other operating and geometric parameters of the laser is determined. The models fit up to 98% of the experimentally measured laser output power data.
Similar content being viewed by others
References
Webb, C., Jones, J. (eds.): Handbook of Laser Technology and Applications, vol. 2. Institute of Physics Publishing, New York (2004)
Little, C.E.: Metal Vapour Lasers: Physics, Engineering and Applications. Wiley, Chichester (1999)
Sabotinov, N.V.: Metal vapor lasers. In: Endo, M., Walter, R.F. (eds.) Gas lasers, pp. 449–494. CRC Press, Boca Raton (2006)
Tanzi, E.L., Lupton, J.R., Alster, T.S.: Lasers in dermatology: four decades of progress. J. Am. Acad. Dermatol. 49(1), 1–34 (2003). https://doi.org/10.1067/mjd.2003.582
Eimpunth, S., Wanitphakdeedecha, R., Triwongwaranat, D., Varothai, S., Manuskiatti, W.: Therapeutic outcome of melasma treatment by dual-wavelength (511 and 578 nm) laser in patients with skin phototypes III–V. Clin. Exp. Dermatol. 39(3), 292–297 (2014). https://doi.org/10.1111/ced.12267
Steen, W.M., Mazumder, J.: Laser Material Processing. Springer, London (2010)
Evtushenko, G.S. (ed.): Methods and Instruments for Visual and Optical Diagnostics of Objects and Fast Processes. Nova Science, New York (2018)
Cheng, C., Sun, W.: Study on the kinetic mechanisms of copper vapor lasers with hydrogen-neon admixtures. Opt. Commun. 144(1–3), 109–117 (1997). https://doi.org/10.1016/S0030-4018(97)00328-3
Boichenko, A.M., Evtushenko, G.S., Nekhoroshev, V.O., Shiyanov, D.V., Torgaev, S.N.: CuBr−Ne−HBr laser with a high repetition frequency of the lasing pulses at a reduced energy deposition in the discharge. Phys. Wave Phenomena 23(1), 1–13 (2015). https://doi.org/10.3103/S1541308X1501001X
Torgaev, S.N., Boichenko, A.M., Evtushenko, G.S., Shiyanov, D.V.: Simulation of a CuBr–Ne–HBr laser with high pump pulse repetition frequencies. Russ. Phys. J. 55(9), 1039–1045 (2013). https://doi.org/10.1007/s11182-013-9919-5
Iliev, I.P., Gocheva-Ilieva, S.G.: Model of the radial gas temperature distribution in a copper bromide vapour laser. Quantum Electron. 40(6), 479–483 (2010). https://doi.org/10.1070/QE2010v040n06ABEH014201
Iliev, I.P., Gocheva-Ilieva, S.G.: Study on the maximum electric power supplied to copper bromide vapor lasers. J. Comput. Electron. 19, 1187–1191 (2020). https://doi.org/10.1007/s10825-020-01490-w
Denev, N.P., Iliev, I.P.: Second degree model of laser efficiency of a copper bromide laser. AIP Conf. Proc. 1561, 92–99 (2013). https://doi.org/10.1063/1.4827218
Gocheva-Ilieva, S.G., Iliev, I.P.: Statistical Models of Characteristics of Metal Vapor Lasers. Nova Science, New York (2011)
Iliev, I.P., Voynikova, D.S., Gocheva-Ilieva, S.G.: Simulation of the output power of copper bromide lasers by the MARS method. Quantum Electron. 42(4), 298–303 (2012). https://doi.org/10.1070/QE2012v042n04ABEH014808
Iliev, I.P., Voynikova, D.S., Gocheva-Ilieva, S.G.: Application of the classification and regression trees for modeling the laser output power of a copper bromide vapor laser. Math. Probl. Eng. 2013, 654845 (2013). https://doi.org/10.1155/2013/654845
Evtushenko, G.S., Trigub, M.V., Gubarev, F.A., Evtushenko, T.G., Torgaev, S.N., Shiyanov, D.V.: Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting. Rev. Sci. Instrum. 85(3), 033111 (2014). https://doi.org/10.1063/1.4869155
Trigub, M.V., Torgaev, S.N., Evtushenko, G.S., Drobchik, V.V.: Laser monitors for high speed imaging of plasma, beam and discharge processes. Key Eng. Mater. 712, 303–307 (2016). https://doi.org/10.4028/www.scientific.net/KEM.712.303
Li, L., Ilyin, A.P., Gubarev, F.A., Mostovshchikov, A.V., Klenovskii, M.S.: Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor. Ceram. Int. 44(16), 19800–19808 (2018). https://doi.org/10.1016/j.ceramint.2018.07.237
Li, L., Mostovshchikov, A.V., Ilyin, A.P., Antipov, P.A., Shiyanov, D.V., Gubarev, F.A.: Imaging system with brightness amplification for a metal-nanopowder-combustion study. J. Appl. Phys. 127(19), 194503 (2020). https://doi.org/10.1063/1.5139508
Shiyanov, D.V., Evtushenko, G.S., Sukhanov, V.B., Fedorov, V.F.: Effect of gas mixture composition and pump conditions on the parameters of the CuBr–Ne–H2 (HBr) laser. Quantum Electron. 37(1), 49–52 (2007). https://doi.org/10.1070/QE2007v037n01ABEH013217
Gubarev, F.A., Sukhanov, V.B., Evtushenko, G.S., Fedorov, V.F., Shiyanov, D.V.: CuBr laser excited by a capacitively coupled longitudinal discharge. IEEE J. Quantum Electron. 45(2), 171–177 (2009). https://doi.org/10.1109/JQE.2008.2002502
Gubarev, F.A., Evtushenko, G.S., Vuchkov, N.K., Sukhanov, V.B., Shiyanov, D.V.: Modeling technique of capacitive discharge pumping of metal vapor lasers for electrode capacitance optimization. Rev. Sci. Instrum. 83(5), 055111 (2012). https://doi.org/10.1063/1.4719920
Gubarev, F.A., Shiyanov, D.V., Sukhanov, V.B., Evtushenko, G.S.: Capacitive-discharge-pumped CuBr laser with 12 W average output power. IEEE J. Quantum Electron. 49(1), 89–94 (2013). https://doi.org/10.1109/JQE.2012.2227952
Shiyanov, D.V., Sukhanov, V.B., Gubarev, F.A.: Influence of peaking capacitance on the output power of capacitive-discharge-pumped metal halide vapor lasers. IEEE J. Quantum Electron. 54(2), 1500107 (2018). https://doi.org/10.1109/JQE.2018.2806943
Gubarev, F.A., Shiyanov, D.V., Sukhanov, V.B.: Capacitive-discharge-pumped copper bromide vapor laser with output power up to 15 W. In: 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, 8597961, pp. 1909–1914 (2018). https://doi.org/https://doi.org/10.23919/PIERS.2018.8597961
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/BF00058655
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Izenman, A.J.: Modern Multivariate Statistical Techniques Regression, Classification, and Manifold Learning. Springer, New York (2008)
IBM SPSS Statistics software: https://www.ibm.com/analytics/spss-statistics-software
Salford Predictive Modeler: https://www.minitab.com/en-us/products/spm/
Acknowledgements
This work has been carried out with financial support from the MES through grant no. D01-271/16.12.2019 for NCDSC part of the Bulgarian National Roadmap on RIs. The second author was supported by grant no. MU19-FMI-010 of NPD at University of Plovdiv Paisii Hilendarski, financed by the Bulgarian Ministry of Education and Science.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ivanov, A.V., Fidanov, D.V. & Gocheva-Ilieva, S.G. Random forests for statistical modeling of experimental data for CuBr vapor lasers used as brightness amplifiers. J Comput Electron 20, 958–965 (2021). https://doi.org/10.1007/s10825-020-01652-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-020-01652-w