Abstract
The resonant detection of terahertz radiation using a dispersive AlN/GaN multichannel high-electron-mobility transistor (HEMT) is analyzed and modeled in this paper. The proposed full-wave model is based on the concurrent solution of the complete hydrodynamic model (CHM) and Maxwell’s equations. The CHM is derived from the first three moments of the Boltzmann transport equation (BTE). Considering the variations of the electron temperature and transport parameters along the HEMT channel, this model well characterizes the electron–wave interaction in the device for both low- and high-field conditions. Moreover, the effect of the optical phonon modes of the GaN buffer, which cannot be ignored in the target terahertz frequency band, is described using the Lorentz dispersive model. Employing the developed model, the transmission spectrum of the device is extracted numerically using the finite-difference time-domain (FDTD) method for grating-gate single-, double-, and three-channel HEMT structures. The results show that, at a lattice temperature of 300 K for a GaN grating-gate HEMT with gate periodicity of 680 nm and gate width of 520 nm, at given resonance frequency and overall electron concentration, the resonance depth improves by about 2.7 dB in the three- compared with the single-channel structure. Moreover, it is shown that the detection performance of such a structure at 300 K is similar to the single-channel HEMT at a reduced temperature of 120 K. Therefore, the multichannel HEMTs can show notably improved resonant detection performance, enabling the design of resonant detectors with enhanced sensitivity at room temperature.
Similar content being viewed by others
References
Nagatsuma, T., Horiguchi, S., Minamikata, Y., Yoshimizu, Y., Hisatake, S., Kuwano, S., Yoshimoto, N., Terada, J., Takahashi, H.: Terahertz wireless communications based on photonics technologies. Opt. Express 21(20), 23736–23747 (2013)
Voß, D., Zouaghi, W., Jamshidifar, M., et al.: Imaging and spectroscopic sensing with low-repetition-rate terahertz pulses and GaN TeraFET detectors. J. Infrared Milli Terahz Waves 39, 262–272 (2018)
Akyildiza, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)
Liu, L., Ding, H., Yong, K.T., Roy, I., Law, W.C., Kopwitthaya, A., Kumar, R., Erogbogbo, F., Zhang, X., Prasad, P.N.: Application of gold nanorods for plasmonic and magnetic imaging of cancer cells. Plasmonics 6(1), 105–112 (2011)
Wang, J.: A review of recent progress in plasmon-assisted nanophotonic devices. Front. Optoelectron. 7(3), 320–337 (2014)
MacDonald, K.F., Samson, Z.L., Stockman, M.I., Zheludev, N.I.: Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009)
Zh Dong, Ch., Sun, J.Si, Deng, Xi: A tunable plasmonic nano-antenna based on metal–graphene double-nanorods. Laser Phys. Lett. 15(5), 056202 (2018)
Bauer, M., Rämer, A., Chevtchenko, S.A., Osipov, K.Y., Čibiraitė, D.: A high-sensitivity AlGaN/GaN HEMT Terahertz detector with integrated broadband bow-tie antenna. IEEE Trans. THz Sci. Technol. 9(4), 430–444 (2019)
Bhardwaj, S., Nahar, N.K., Rajan, S., Volakis, J.: Numerical analysis of terahertz emissions from an ungated HEMT using full-wave hydrodynamic model. IEEE Trans. Electron Devices 63(3), 990–996 (2016)
Khorrami, M.A., El-Ghazaly, S., Yu, S.Q., Naseem, H.: Compact terahertz surface plasmon switch inside a two dimensional electron gas layer. Int. IEEE Microw. Symp, Montreal, Canada (2012)
Knap, W., Lusakowski, J., Parenty, T., Bollaert, S., Cappy, A., Popov, V.V., Shur, M.S.: Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett. 84, 2331–2333 (2004)
Coquillat, D., Nadar, S., Teppe, F., Dyakonova, N., Boubanga-Tombet, S., Knap, W., Nishimura, T., Otsuji, T., Meziani, Y.M., Tsymbalov, G.M., Popov, V.V.: Room temperature detection of sub- terahertz radiation in double-grating-gate transistors. Opt. Express 18(6), 6024–6032 (2010)
Otsuji, T., Watanabe, T., Tombet, S.A.B., Satou, A., Knap, W.M., Popov, V.V., Ryzhii, M., Ryhzhii, V.: Emission and detection of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene. IEEE Trans. Terahertz Sci. Technol 3(63), 404–471 (2013)
Popov, V.V.: Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures. J. Infrared Milli. Terahz. Waves 32, 1178–1191 (2011)
Muravjov, A.V., Shur, M., et al.: Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 96(4), 042105-1–042105-3 (2010)
Sensale-Rodrígueza, B., Faya, P., Liua, L., Jenaa, D., Xinga, H.G.: Enhanced terahertz detection in resonant tunnel diode-gated HEMTs. ECS Trans. 49(1), 93–102 (2012)
Bhardwaj, S., Rajan, S., Volakis, J.K.: Analysis of plasma-modes of a gated bilayer system in high electron mobility transistors. J. Appl. Phys. 119(19), 193102-1–193102-8 (2016)
Vitanov, S., Palankovski, V., Maroldt, S., Quay, R., Murad, S., Rodle, T., Selberherr, S.: Physics-based modeling of GaN HEMTs. IEEE Trans. Electron Devices 59(3), 685–693 (2012)
Lombardi, C., Manzini, S., Saporito, A., Vanzi, M.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 7(11), 1164–1171 (1988)
Rosencher, E., Vinter, B.: Optoelectronics. Cambridge University Press, UK (2004)
Bhardwaj, S., Rajan, S., Volakis, J. K.: Room temperature detection of plasma resonances using multiple 2DEG channels in HEMT, IEEE International Symposium on Antennas and Propagation (APSURSI-2015), Vancouver, pp. 1648-1649 (2015)
Sarma, S.D., Hwang, E.: Plasmons in coupled bilayer structures. Phys. Rev. Lett. 81(19), 4216–4219 (1998)
Khorrami, M.A., El-Ghazaly, S., Naseem, H., Yu, S.Q.: Global modeling of active terahertz plasmonic devices. IEEE Trans. THz Sci. Technol. 4(1), 101–109 (2014)
Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New Jersey (2007)
Daneshmandian, F., Abdipour, A., Askarpour, A.N.: Global modeling of terahertz plasmonic HEMT using complete hydrodynamic model. J. Opt. Soc. Am. B 36(12), 3423–3428 (2019)
Daneshmandian, F., Abdipour, A., Askarpour, A.N.: Numerical investigation of the instability-based power emission from an ungated plasmonic HEMT using complete hydrodynamic model. Plasmonics 15, 1613–1620 (2020)
Daneshmandian, F., Abdipour, A., Askarpour, A.N.: Full wave analysis of terahertz dispersive and lossy plasmonic HEMT using hydrodynamic model. J. Opt. Soc. Am. B 36(4), 1138–1143 (2019)
Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood, MA, USA (2005)
Elsherbeni, A.Z., Demir, V.: The finite-difference time-domain method in electromagnetics with MATLAB® simulations, 2nd edn. SciTech Publishing, UK (2015)
Vasileska, D., Goodnick, S.M.: Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling. Springer, USA (2011)
Hammadi, M., El-Ghazaly, S.: Air-bridged MESFET: a new structure to reduce wave propagation effect in high frequency transistors. IEEE Trans. Microw. Theory Tech. 47(6), 890–899 (1999)
Nisar, U.A., Ashraf, W., Qamara, S.: A splitting scheme based on the space–time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices. Comput. Phys. Commun. 205, 69–86 (2016)
Aste, A., Vahldieck, R.: Time-domain simulation of the full hydrodynamic model. Int. J. Numer. Model. 16(2), 161–174 (2003)
Caughey, D., Thomas, R.: Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)
Vitanov, S., Palankovski, V.: Normally-Off AlGaN/GaN HEMTs with InGaN cap layer: a simulation study. Solid-State Electron. 52(11), 1791–1795 (2008)
Foutz, B.E., O’ Leary, S.K., Shur, M.S., Eastman, L.F.: Transient electron transport in wurtzite GaN, InN, and AlN. J. Appl. Phys. 85(11), 7727–7734 (1999)
Abou El-Ela, F.M., Mohamed, A.Z.: Electron transport characteristics of Wurtzite GaN. ISRN Condens. Matter Phys. 2013, 1–6 (2013)
F. Daneshmandian, A. Abdipour, A. N. Askarpour, “Full wave modeling and analysis of plasmonic HEMT performance,” 2018 Fifth Inter. Conf. on Mm-Wav. and Thz. Tech. (MMWATT), pp. 20-23, 2018
Movahedi, M., Abdipour, A.: Complex frequency shifted-perfectly matched layer for the finite-element time-domain method. Int. J. Electron. Commun. (AEÜ) 63(1), 72–77 (2009)
Movahedi, M., Abdipour, A.: Efficient numerical methods for simulation of high-frequency active devices. IEEE Trans. Microw. Theory Tech. 54(6), 2636–2645 (2006)
Wang, L., Hu, W., Wang, J., Wang, X., Wang, S., Chen, X., Lu, W.: Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency. Appl. Phys. Lett. 100(12), 123501-1–123501-5 (2012)
Davydov, V.Y., Kitaev, Y.E., Goncharuk, I.N., Smirnov, A.N.: Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58(19), 12899–12907 (1998)
Eguiluz, A., Lee, T.K., Quinn, J.J., Chiu, K.W.: Interface excitations in metal-insulator-semiconductor structures. Phys. Rev. B 11(12), 4989–4993 (1975)
Popov, V.V., Ermolaev, D.M., Maremyanin, K.V., Maleev, N.A., Zemlyakov, V.E., Gavrilenko, V.I., Shapoval, S.Y.: High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array. Appl. Phys. Lett. 98(15), 153504-1–153504-3 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Daneshmandian, F., Abdipour, A. & Askarpour, A.N. Numerical modeling of highly sensitive resonant detection of THz radiation using a multichannel dispersive plasmonic HEMT. J Comput Electron 20, 912–921 (2021). https://doi.org/10.1007/s10825-020-01651-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-020-01651-x