[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Numerical modeling of highly sensitive resonant detection of THz radiation using a multichannel dispersive plasmonic HEMT

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The resonant detection of terahertz radiation using a dispersive AlN/GaN multichannel high-electron-mobility transistor (HEMT) is analyzed and modeled in this paper. The proposed full-wave model is based on the concurrent solution of the complete hydrodynamic model (CHM) and Maxwell’s equations. The CHM is derived from the first three moments of the Boltzmann transport equation (BTE). Considering the variations of the electron temperature and transport parameters along the HEMT channel, this model well characterizes the electron–wave interaction in the device for both low- and high-field conditions. Moreover, the effect of the optical phonon modes of the GaN buffer, which cannot be ignored in the target terahertz frequency band, is described using the Lorentz dispersive model. Employing the developed model, the transmission spectrum of the device is extracted numerically using the finite-difference time-domain (FDTD) method for grating-gate single-, double-, and three-channel HEMT structures. The results show that, at a lattice temperature of 300 K for a GaN grating-gate HEMT with gate periodicity of 680 nm and gate width of 520 nm, at given resonance frequency and overall electron concentration, the resonance depth improves by about 2.7 dB in the three- compared with the single-channel structure. Moreover, it is shown that the detection performance of such a structure at 300 K is similar to the single-channel HEMT at a reduced temperature of 120 K. Therefore, the multichannel HEMTs can show notably improved resonant detection performance, enabling the design of resonant detectors with enhanced sensitivity at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nagatsuma, T., Horiguchi, S., Minamikata, Y., Yoshimizu, Y., Hisatake, S., Kuwano, S., Yoshimoto, N., Terada, J., Takahashi, H.: Terahertz wireless communications based on photonics technologies. Opt. Express 21(20), 23736–23747 (2013)

    Article  Google Scholar 

  2. Voß, D., Zouaghi, W., Jamshidifar, M., et al.: Imaging and spectroscopic sensing with low-repetition-rate terahertz pulses and GaN TeraFET detectors. J. Infrared Milli Terahz Waves 39, 262–272 (2018)

    Article  Google Scholar 

  3. Akyildiza, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)

    Article  Google Scholar 

  4. Liu, L., Ding, H., Yong, K.T., Roy, I., Law, W.C., Kopwitthaya, A., Kumar, R., Erogbogbo, F., Zhang, X., Prasad, P.N.: Application of gold nanorods for plasmonic and magnetic imaging of cancer cells. Plasmonics 6(1), 105–112 (2011)

    Article  Google Scholar 

  5. Wang, J.: A review of recent progress in plasmon-assisted nanophotonic devices. Front. Optoelectron. 7(3), 320–337 (2014)

    Article  Google Scholar 

  6. MacDonald, K.F., Samson, Z.L., Stockman, M.I., Zheludev, N.I.: Ultrafast active plasmonics. Nat. Photonics 3, 55–58 (2009)

    Article  Google Scholar 

  7. Zh Dong, Ch., Sun, J.Si, Deng, Xi: A tunable plasmonic nano-antenna based on metal–graphene double-nanorods. Laser Phys. Lett. 15(5), 056202 (2018)

    Article  Google Scholar 

  8. Bauer, M., Rämer, A., Chevtchenko, S.A., Osipov, K.Y., Čibiraitė, D.: A high-sensitivity AlGaN/GaN HEMT Terahertz detector with integrated broadband bow-tie antenna. IEEE Trans. THz Sci. Technol. 9(4), 430–444 (2019)

    Article  Google Scholar 

  9. Bhardwaj, S., Nahar, N.K., Rajan, S., Volakis, J.: Numerical analysis of terahertz emissions from an ungated HEMT using full-wave hydrodynamic model. IEEE Trans. Electron Devices 63(3), 990–996 (2016)

    Article  Google Scholar 

  10. Khorrami, M.A., El-Ghazaly, S., Yu, S.Q., Naseem, H.: Compact terahertz surface plasmon switch inside a two dimensional electron gas layer. Int. IEEE Microw. Symp, Montreal, Canada (2012)

    Book  Google Scholar 

  11. Knap, W., Lusakowski, J., Parenty, T., Bollaert, S., Cappy, A., Popov, V.V., Shur, M.S.: Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett. 84, 2331–2333 (2004)

    Article  Google Scholar 

  12. Coquillat, D., Nadar, S., Teppe, F., Dyakonova, N., Boubanga-Tombet, S., Knap, W., Nishimura, T., Otsuji, T., Meziani, Y.M., Tsymbalov, G.M., Popov, V.V.: Room temperature detection of sub- terahertz radiation in double-grating-gate transistors. Opt. Express 18(6), 6024–6032 (2010)

    Article  Google Scholar 

  13. Otsuji, T., Watanabe, T., Tombet, S.A.B., Satou, A., Knap, W.M., Popov, V.V., Ryzhii, M., Ryhzhii, V.: Emission and detection of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene. IEEE Trans. Terahertz Sci. Technol 3(63), 404–471 (2013)

    Google Scholar 

  14. Popov, V.V.: Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures. J. Infrared Milli. Terahz. Waves 32, 1178–1191 (2011)

    Article  Google Scholar 

  15. Muravjov, A.V., Shur, M., et al.: Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 96(4), 042105-1–042105-3 (2010)

    Article  Google Scholar 

  16. Sensale-Rodrígueza, B., Faya, P., Liua, L., Jenaa, D., Xinga, H.G.: Enhanced terahertz detection in resonant tunnel diode-gated HEMTs. ECS Trans. 49(1), 93–102 (2012)

    Article  Google Scholar 

  17. Bhardwaj, S., Rajan, S., Volakis, J.K.: Analysis of plasma-modes of a gated bilayer system in high electron mobility transistors. J. Appl. Phys. 119(19), 193102-1–193102-8 (2016)

    Article  Google Scholar 

  18. Vitanov, S., Palankovski, V., Maroldt, S., Quay, R., Murad, S., Rodle, T., Selberherr, S.: Physics-based modeling of GaN HEMTs. IEEE Trans. Electron Devices 59(3), 685–693 (2012)

    Article  Google Scholar 

  19. Lombardi, C., Manzini, S., Saporito, A., Vanzi, M.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 7(11), 1164–1171 (1988)

    Article  Google Scholar 

  20. Rosencher, E., Vinter, B.: Optoelectronics. Cambridge University Press, UK (2004)

    Google Scholar 

  21. Bhardwaj, S., Rajan, S., Volakis, J. K.: Room temperature detection of plasma resonances using multiple 2DEG channels in HEMT, IEEE International Symposium on Antennas and Propagation (APSURSI-2015), Vancouver, pp. 1648-1649 (2015)

  22. Sarma, S.D., Hwang, E.: Plasmons in coupled bilayer structures. Phys. Rev. Lett. 81(19), 4216–4219 (1998)

    Article  Google Scholar 

  23. Khorrami, M.A., El-Ghazaly, S., Naseem, H., Yu, S.Q.: Global modeling of active terahertz plasmonic devices. IEEE Trans. THz Sci. Technol. 4(1), 101–109 (2014)

    Article  Google Scholar 

  24. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, New Jersey (2007)

    Google Scholar 

  25. Daneshmandian, F., Abdipour, A., Askarpour, A.N.: Global modeling of terahertz plasmonic HEMT using complete hydrodynamic model. J. Opt. Soc. Am. B 36(12), 3423–3428 (2019)

    Article  Google Scholar 

  26. Daneshmandian, F., Abdipour, A., Askarpour, A.N.: Numerical investigation of the instability-based power emission from an ungated plasmonic HEMT using complete hydrodynamic model. Plasmonics 15, 1613–1620 (2020)

    Article  Google Scholar 

  27. Daneshmandian, F., Abdipour, A., Askarpour, A.N.: Full wave analysis of terahertz dispersive and lossy plasmonic HEMT using hydrodynamic model. J. Opt. Soc. Am. B 36(4), 1138–1143 (2019)

    Article  Google Scholar 

  28. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood, MA, USA (2005)

    MATH  Google Scholar 

  29. Elsherbeni, A.Z., Demir, V.: The finite-difference time-domain method in electromagnetics with MATLAB® simulations, 2nd edn. SciTech Publishing, UK (2015)

    Book  Google Scholar 

  30. Vasileska, D., Goodnick, S.M.: Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling. Springer, USA (2011)

    Book  Google Scholar 

  31. Hammadi, M., El-Ghazaly, S.: Air-bridged MESFET: a new structure to reduce wave propagation effect in high frequency transistors. IEEE Trans. Microw. Theory Tech. 47(6), 890–899 (1999)

    Article  Google Scholar 

  32. Nisar, U.A., Ashraf, W., Qamara, S.: A splitting scheme based on the space–time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices. Comput. Phys. Commun. 205, 69–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Aste, A., Vahldieck, R.: Time-domain simulation of the full hydrodynamic model. Int. J. Numer. Model. 16(2), 161–174 (2003)

    Article  MATH  Google Scholar 

  34. Caughey, D., Thomas, R.: Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)

    Article  Google Scholar 

  35. Vitanov, S., Palankovski, V.: Normally-Off AlGaN/GaN HEMTs with InGaN cap layer: a simulation study. Solid-State Electron. 52(11), 1791–1795 (2008)

    Article  Google Scholar 

  36. Foutz, B.E., O’ Leary, S.K., Shur, M.S., Eastman, L.F.: Transient electron transport in wurtzite GaN, InN, and AlN. J. Appl. Phys. 85(11), 7727–7734 (1999)

    Article  Google Scholar 

  37. Abou El-Ela, F.M., Mohamed, A.Z.: Electron transport characteristics of Wurtzite GaN. ISRN Condens. Matter Phys. 2013, 1–6 (2013)

    Article  Google Scholar 

  38. F. Daneshmandian, A. Abdipour, A. N. Askarpour, “Full wave modeling and analysis of plasmonic HEMT performance,” 2018 Fifth Inter. Conf. on Mm-Wav. and Thz. Tech. (MMWATT), pp. 20-23, 2018

  39. Movahedi, M., Abdipour, A.: Complex frequency shifted-perfectly matched layer for the finite-element time-domain method. Int. J. Electron. Commun. (AEÜ) 63(1), 72–77 (2009)

    Article  Google Scholar 

  40. Movahedi, M., Abdipour, A.: Efficient numerical methods for simulation of high-frequency active devices. IEEE Trans. Microw. Theory Tech. 54(6), 2636–2645 (2006)

    Article  Google Scholar 

  41. Wang, L., Hu, W., Wang, J., Wang, X., Wang, S., Chen, X., Lu, W.: Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency. Appl. Phys. Lett. 100(12), 123501-1–123501-5 (2012)

    Article  Google Scholar 

  42. Davydov, V.Y., Kitaev, Y.E., Goncharuk, I.N., Smirnov, A.N.: Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58(19), 12899–12907 (1998)

    Article  Google Scholar 

  43. Eguiluz, A., Lee, T.K., Quinn, J.J., Chiu, K.W.: Interface excitations in metal-insulator-semiconductor structures. Phys. Rev. B 11(12), 4989–4993 (1975)

    Article  Google Scholar 

  44. Popov, V.V., Ermolaev, D.M., Maremyanin, K.V., Maleev, N.A., Zemlyakov, V.E., Gavrilenko, V.I., Shapoval, S.Y.: High-responsivity terahertz detection by on-chip InGaAs/GaAs field-effect-transistor array. Appl. Phys. Lett. 98(15), 153504-1–153504-3 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Daneshmandian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshmandian, F., Abdipour, A. & Askarpour, A.N. Numerical modeling of highly sensitive resonant detection of THz radiation using a multichannel dispersive plasmonic HEMT. J Comput Electron 20, 912–921 (2021). https://doi.org/10.1007/s10825-020-01651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01651-x

Keywords

Navigation