Abstract
The article presents a 65 nm technology implementation of a low-power artificial spiking neuron intellectual property (IP) core. The concept of the circuit is based on modeling the mechanism of a perikaryon membrane and the propagation of the action potential in an axon. Nerve impulses are generated using a current-controlled oscillator. Thanks to this oscillator, the circuit is implemented exclusively using metal-oxide semiconductor transistors, with the omission of capacitors. The main advantage of the presented implementation is the possibility of implementing the IP-core using nanometer digital complementary metal-oxide semiconductor technologies with the possibility of placing it within a common substrate with a digital processor. The circuit operates in weak-inversion mode with a 0.3 V power supply and does not require additional polarization voltages. The maximum frequency of impulse generation equals 2.5 kHz. The paper describes two operating modes of the circuit: a cortical mode with power consumption of 60 pW and a processing mode with power consumption of 52.2 pW. The power reduction was obtained using a circuit structure in which the power supply current consumption is reduced with the moment the circuit starts processing. The article also contains results of a process–voltage–temperature analysis.
Similar content being viewed by others
References
Davis, M., et al.: Loihi, neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)
Cheng, H.-P. et al.: Understanding the design of IBM neurosynaptic system and its tradeoffs: a user perspective. In: Design, Automation & Test in Europe Conference & Exhibition. IEEE (2017)
Qualcomm: Zeroth cognitive processor. https://www.qualcomm.com/news/onq/2013/10/10/introducing-qualcomm-zeroth-processors-brain-inspired-computing (2013). Accessed 17 July 2019
Basu, A., Hasler, P.E.: Nullcline-based design of a silicon neuron. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 2938–2947 (2010)
Wu, X., Saxena, V., Zhu, K., Balagopal, S.: A CMOS Spiking Neuron for brain-inspired neural networks with resistive synapses and in-situ learning. IEEE Trans. Circuits Syst. II Express Br. 62(11), 1088–1092 (2015)
Brandolini, M., et al.: A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS. IEEE J. Solid State Circuits 50(12), 2922–2934 (2015)
Mahmoud, S.A.: Digitally controlled CMOS balanced output transconductor and application to variable gain amplifier and Gm-C filter on field programmable analog array. J. Circuits Syst. Comput. 14(4), 667–684 (2005)
Talaśka, T., Kolasa, M., Długosz, R., Pedrycz, W.: Analog programmable distance calculation circuit for winner takes all neural network realized in the CMOS technology. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 661–673 (2016)
Szczęsny, S.: Current-mode FPAA with CMRR elimination and low sensitivity to mismatch. Circuits Syst. Signal Process. 36(7), 2672–2696 (2017)
Gianni, C., Pennisi, S., Scotti, G., Trifiletti, A.: The universal circuit simulator: a mixed-signal approach to n-port network and impedance synthesis. IEEE Trans. Circuits Syst. I Regul. Pap. 54(10), 2178–2183 (2007)
Szczęsny, S.: HDL-Based Synthesis System with Debugger for Current-Mode FPAA. IEEE Trans. Comput. Aided Des. Integrated Circuits Syst. 37(5), 915–926 (2018)
Makiyama, H., Horita, K., Iwamatsu, T., Oda, H., Sugii, N., Inoue, Y., Yamamoto, Y.: Design consideration of 0.4 V-operation SOTB MOSFET for super low power application. In: International Meeting for Future of Electron Devices. IEEE (2011)
Szczęsny, S.: 0.3 V 2.5 nW per channel current-mode CMOS perceptron for biomedical signal processing in amperometry. IEEE Sens. J. 17(17), 5399–5409 (2017)
Kumar, A., Tripathi, M.M., Chaujar, R.: Ultralow-power dielectric-modulated nanogap-embedded sun-20-nm TGRC-MOSFET for biosensing applications. J. Comput. Electron. 17(4), 1807–1815 (2018)
Chatterjee, S., Pun, K.P., Nebojsa, S., Tsividis, Y., Kinget, P.: Analog Circuit Design Techniques at 0.5 V. Analog Circuits and Signal Processing. Springer US (2007). https://doi.org/10.1007/978-0-387-69954-7
Szczęsny, S.: High speed and low sensitive current-mode CMOS perceptron. Microelectron. Eng. 165, 41–51 (2016)
Handkiewicz, A., Szczęsny, S., Kropidłowski, M.: Over rail-to-rail fully differential voltage-to-current converters for nm scale CMOS technology. Analog Integr. Circuits Signal Process. 94(1), 139–146 (2018)
Sen, S., Venkataramani, S., Rughunathan, A.: Approximate computing for spiking neural networks. In: Design, Automation & Test in Europe Conference & Exhibition, pp. 193–198 (2017)
Berger, T.W., Song, S., Chan, R.H.M.: A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 198–211 (2012)
Huderek, D., Szczęsny, S., Rato, R.: Spiking neural network based on cusp catastrophe theory. Found. Comput. Dec. Sci. 44(3), 273–284 (2019)
Ferrari, G., et al.: Ultra-low-noise CMOS current preamplifier from DC to 1 MHz. Electron. Lett. 45(25), 1278–1280 (2009)
Puglisi, F.M., Pavan, P.: Guidelines for a reliable analysis of random telegraph noise in electronic devices. IEEE Trans. Instrum. Meas. 65(6), 1435–1442 (2016)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)
Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)
Vasallo, B.G., Mateos, J., González, T.: Ion shot noise in Hodgkin–Huxley neurons. J. Comput. Electron. 17(4), 1790–1796 (2018)
Basu, A.: Small-signal neural models and their applications. IEEE Trans. Biomed. Circuits Syst. 6(1), 64–75 (2012)
Laifi, A., Al Abaji, M.A., Thewes, R.: A 96 dB SNDR current-mode continuous-time-modulator for electrochemical sensor arrays. In: IEEE Mixed Design of Integrated Circuits & Systems (MIXDES), International Conference (2015)
Standen, N.B.: Calcium and sodium ions as charge carriers in the action potential of an identified snail neurone. J. Physiol. 249(2), 241–252 (1975)
Sun, L., Liu, H.: Steady state membrane potential and sodium current changes during high frequency electrical nerve stimulation. In: IEEE Seventh International Conference on Measuring Technology and Mechatronics Automation, pp. 1005–1008 (2015)
Śniatała, P., Naumowicz, M., Handkiewicz, A., Szczęsny, S., De Melo, Joao L.A., Paulino, N., Goes, J.: Current mode sigma-delta modulator designed with the help of transistor’s size optimization tool. Bull. Pol. Acad. Sci. Tech. Sci. 63(4), 919–922 (2015)
Joubert, A., Belhadj, B., Temam, O., Heliot, R.: Hardware spiking neurons design: analog or digital?. In: The 2012 International Joint Conference on Neural Networks (2012)
Sourikopoulos, I., Hedayat, S., Loyez, C., Danneville, F., Hoel, V., Mercier, E., Cappy, A.: A 4-fJ/spike artificial neuron in 65 nm CMOS technology. Front. Neurosci. (2017). https://doi.org/10.3389/fnins.2017.00123
Markram, H., Gerstner, W., Sjöström, P.: Spike-timing-dependent plasticity: a comprehensive overview. Front. Synaptic Neurosci. 4(2), 1–3 (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Szczęsny, S., Huderek, D. 60 pW 20 μm size CMOS implementation of an actual soma membrane. J Comput Electron 19, 242–252 (2020). https://doi.org/10.1007/s10825-019-01431-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-019-01431-2