[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Performance evaluation of micromachined fabricated multiband horn-shaped slotted patch antenna

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this research work, a 2-inch p-type silicon (Si) wafer with high dielectric constant (11.9) was used as a substrate to minimize substrate conductivity losses, thereby improving the antenna radiation efficiency. A thin gold (Au) film with dimensions of \(350\times 260\times 2\,\upmu \mathrm{m}^{3}\) was deposited on the substrate. Four thin slots having the same dimensions of \(20\times 5\times 2\,\upmu \mathrm{m}^{3}\) were cut from the gold patch to create four different notches, thus forming a horn-shaped multiband microantenna. To evaluate the performance of this useful structure, a horn-shaped patch antenna was designed to achieve operation in multiple frequency bands, namely the C band (6.75 GHz), Ku band (14.734 and 17.76 GHz), and K band (22.45 GHz). To validate the design, various parameters such as the return loss and radiation patterns were obtained experimentally for the fabricated antenna and compared with results from the Ansoft high-frequency structure simulator (HFSS) tool. The simulated and experimental results were found to show good agreement. Ideally, the slots in the horn-shaped patch antenna should be made very thin to achieve a wide impedance bandwidth of 31 %, for \({\vert }{S}_{11}{\vert } \le -10\,\hbox {dB}\) from 6.75 to 23.15 GHz with high gain and unidirectional radiation pattern for all resonant frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Oraizi, H., Hedayati, S.: Miniaturization of microstrip antennas by the novel application of the Giuseppe Peano. IEEE Trans. Antennas Propag. 60(8), 3559–3567 (2012)

    Article  MathSciNet  Google Scholar 

  2. Lee, B., Harackiewicz, F.J.: Miniature microstrip antenna with a partially filled high-permittivity substrate. IEEE Trans. Antennas Propag. 50(8), 1160–1162 (2002)

    Article  Google Scholar 

  3. Hoorfar, A., Perrotta, A.: An experimental study of microstrip antennas on very high permittivity ceramic substrates and very small ground planes. IEEE Trans. Antennas Propag. 49(4), 838–840 (2001)

    Article  Google Scholar 

  4. Waterhouse, R., Targonski, S., Kokotoff, D.: Design and performance of small printed antennas. IEEE Trans. Antennas Propag. 46(11), 1629–1633 (1998)

    Article  Google Scholar 

  5. Chatterjee, S., Ghosh, K., Paul, J., Chowdhury, S.K., Chanda, D., Sarkar, P.P.: Compact microstrip antenna for mobile communication. Microwave Opt. Technol. Lett. 55(5), 954–957 (2013)

    Article  Google Scholar 

  6. Salehi, M., Motevasselian, A., Tavakoli, A., Heidari, T.: Mutual coupling reduction of microstrip antennas using defected ground structure. In: 10th IEEE Singapore International Conference on Communication systems, vol. 1 (2005)

  7. Papapolymerou, I., Drayton, R.F., Katehi, L.P.B.: Micromachined patch antenna. IEEE Trans. Antennas Propag. 46, 275–283 (1998)

    Article  Google Scholar 

  8. Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley India Pvt. Limited, New York (2009)

    Google Scholar 

  9. Rogers, R.L., Neikirk, D.P.: Radiation properties of slot and dipole elements on layered substrates. Int. J. Infrared and Millim. Waves 10(10), 697–728 (1989)

    Article  Google Scholar 

  10. Filipovic, D.F., Gearhart, S.S., Rebeiz, G.M.: Double-slot antennas on extended hemispherical and elliptical dielectric lenses. IEEE Trans. Microwave Theory Tech. 41(10), 1738–1749 (1993)

    Article  Google Scholar 

  11. Rajab, K.Z., Mittra, R., Lanagan, M.T.: Size reduction of microstrip patch antennas with left-handed transmission line loading. IET Microwave Antennas Propag. 1, 39–44 (2007)

    Article  Google Scholar 

  12. Lu, J.-H.: Broadband dual-frequency operation of circular patch antennas and arrays with a pair of L shaped slots. IEEE Trans. Antenna Propag. 51(5), 1018–1023 (2003)

    Article  Google Scholar 

  13. Wong, K.L., Hsu, W.H.: Abroad-band rectangular patch antenna with a pair of wide slits. IEEE Trans. Antenna Propag. 49(9), 1345–1347 (2001)

    Article  Google Scholar 

  14. Guo, Y.X., Luk, K.M., Lee, K.F.: L-probe proximity fed annular ring microstrip antennas. IEEE Trans. Antenna Propag. 49(1), 19–21 (2001)

    Article  Google Scholar 

  15. Pozar, D.M.: A microstrip antenna aperture coupled to a microstripline. Electron. Lett. 21(17), 49–50 (1985)

    Article  Google Scholar 

  16. Islam, M.T., Shakib, M.N., Misran, N.: Multi-slotted microstrip patch antenna for wireless communication. Progr. Electromag. Res. Lett. 10, 11–18 (2009)

    Article  Google Scholar 

  17. Nishamol, M.S., Sarin, V.P., Tony, D., Aanandan, C.K., Mohanan, P., Vasudevan, K.: A broadband microstrip antenna for IEEE802.11.A/WIMAX/HIPERLAN2 applications. Progr. Electromag. Res. Lett. 19, 155–161 (2010)

    Article  Google Scholar 

  18. Anguera, J., Font, G., Puente, C., Borja, C., Soler, J.: Dual frequency broadband microstrip antenna with a reactive loading and stacked elements. Progr. Electromag. Res. Lett. 10, 1–10 (2009)

  19. Jayasinghe, J.M.J.W., Anguera, J., Uduwawala, D.N.: A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization. Progr. Electromagn. Res. M 27, 255–269 (2012)

    Article  Google Scholar 

  20. Srifi, Nabil Mohamed, Meloui, Mourad, Essaaidi, Mohamed: Rectangular slotted patch antenna for 5–6 GHz applications. Int. J. Microwave Opt. Technol. 5(2), 52–57 (2010)

    Google Scholar 

  21. Polycarpous, A.C.: Introduction to the Finite Element Method in Electromagnetic. Morgan & Claypool, USA (2006)

    Google Scholar 

  22. Wong, K.-L.: Compact and Broadband Microstrip Antennas. Wiley, New York (2002)

    Book  Google Scholar 

  23. Carver, K.R., Mink, J.W.: Microstrip antenna technology. IEEE Trans. Antennas Propag. 29(1), 2–24 (1981)

    Article  Google Scholar 

  24. Derneryd, A.G.: A theoretical investigation of the rectangular microstrip antenna. IEEE Trans. Antennas Propag. AP– 26(4), 532–535 (1978)

    Article  Google Scholar 

  25. Najam, A.I., Duroc, Y., Tedjini, S.: Design and analysis of MIMO antennas for UWB communications. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), vol. 15, pp. 12–16 (2010)

Download references

Acknowledgments

The authors would like to acknowledge and thank the Centre of Excellence in Nano Electronics (CEN) under the India Nanotechnology User Program (INUP), Indian Institute of Technology, Bombay for their support and facilities in carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi B. Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, R., Rana, S.B., Arya, S. et al. Performance evaluation of micromachined fabricated multiband horn-shaped slotted patch antenna. J Comput Electron 15, 1028–1039 (2016). https://doi.org/10.1007/s10825-016-0872-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0872-8

Keywords

Navigation