[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

KBO Orientability

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

This article presents three new approaches to prove termination of rewrite systems with the Knuth–Bendix order efficiently. The constraints for the weight function and for the precedence are encoded in (pseudo-)propositional logic or linear arithmetic and the resulting formula is tested for satisfiability using dedicated solvers. Any satisfying assignment represents a weight function and a precedence such that the induced Knuth–Bendix order orients the rules of the encoded rewrite system from left to right. This means that in contrast to the dedicated methods our approach does not directly solve the problem but transforms it to equivalent formulations for which sophisticated back-ends exist. In order to make all approaches complete we present a method to compute upper bounds on the weights. Furthermore, our encodings take dependency pairs into account to increase the applicability of the order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  3. Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO termination. In: Proc. 17th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4098, pp. 4–18 (2006)

  4. Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: SAT solving for argument filterings. In: Proc. 13th International Conference on Logic for Programming, Artificial Intelligence and Reasoning. LNAI, vol. 4246, pp. 30–44 (2006)

  5. Danzig, G.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    Google Scholar 

  6. Dershowitz, N.: Termination by abstraction. In: Proc. 20th International Conference on Logic Programming. LNCS, vol. 3132, pp. 1–18 (2004)

  7. Dick, J., Kalmus, J., Martin, U.: Automating the Knuth–Bendix ordering. Acta Inform. 28, 95–119 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Proc. 18th International Conference on Computer Aided Verification. LNCS, vol. 4144, pp. 81–94 (2006)

  9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. 6th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 2919, pp. 502–518 (2004)

  10. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisfiab Boolean Model Comput. 2, 1–26 (2006)

    MATH  Google Scholar 

  11. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Proc. 10th International Conference on Theory and Applications of Satisfiability Testing. LNCS, vol. 4501, pp. 340–354 (2007)

  13. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Proc. 19th International Conference on Rewriting Techniques and Applications. LNCS, vol. 5117, pp. 110–125 (2008)

  14. Fuhs, C., Navarro-Marset, R., Otto, C., Giesl, J., Lucas, S., Schneider-Kamp, P.: Search techniques for rational polynomial orders. In: Proc. 9th International Conference on Artificial Intelligence and Symbolic Computation. LNAI, vol. 5144, pp. 109–124 (2008)

  15. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Proc. 3rd International Joint Conference on Automated Reasoning. LNAI, vol. 4130, pp. 281–286 (2006)

  16. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proc. 11th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. LNAI, vol. 3452, pp. 301–331 (2005)

  17. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Proc. 5th International Workshop on Frontiers of Combining Systems. LNAI, vol. 3717, pp. 216–231 (2005)

  18. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Comput. 199(1–2), 172–199 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4), 474–511 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations (preliminary version). In: Proc. 3rd International Conference on Rewriting Techniques and Applications. LNCS, vol. 355, pp. 167–177 (1989)

  22. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Khachiyan, L.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1096 (1979)

    MATH  MathSciNet  Google Scholar 

  24. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon, Oxford (1970)

    Google Scholar 

  25. Koprowski, A., Middeldorp, A.: Predictive labeling with dependency pairs using SAT. In: Proc. 21st International Conference on Automated Deduction. LNAI, vol. 4603, pp. 410–425 (2004)

  26. Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In: Proc. 19th International Conference on Rewriting Techniques and Applications. LNCS, vol. 5117, pp. 202–216 (2008)

  27. Korovin, K., Voronkov., A.: Orienting rewrite rules with the Knuth–Bendix order. Inf. Comput. 183, 165–186 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order constraints with application to expert systems in software verification. In: Proc. 17th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. LNAI, vol. 3029, pp. 827–837 (2004)

  29. Lankford, D.: On proving term rewrite systems are noetherian. Tech. Rep. MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)

    Google Scholar 

  30. Lepper, I.: Derivation lengths and order types of Knuth–Bendix orders. Theor. Comput. Sci. 269(1–2), 433–450 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Marché, C.: Termination problems data base (TPDB), version 4.0. http://www.lri.fr/~marche/tpdb (2007)

  32. Moser, G.: Derivational complexity of Knuth–Bendix orders revisited. In: Proc. 13th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning. LNAI, vol. 4246, pp. 75–89 (2006)

  33. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sato, H., Kurihara, M.: Implementation and performance evaluation of multi-completion procedures for term rewriting systems with recursive path orderings with status. IEICE Trans. Inf. Syst. J89-D(4), 624–631 (2006) (in Japanese)

    Google Scholar 

  35. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving termination using recursive path orders and SAT solving. In: Proc. 6th International Symposium on Frontiers of Combining Systems. LNAI, vol. 4720, pp. 267–282 (2007)

  36. Steinbach, J.: Extensions and comparison of simplification orders. In: Proc. 3rd International Conference on Rewriting Techniques and Applications. LNCS, vol. 355, pp. 434–448 (1989)

  37. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968)

  38. Weiermann, A.: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply recursive derivation lengths. Theor. Comput. Sci. 139(1–2), 355–362 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zankl, H.: BDD and SAT techniques for precedence based orders. Master’s thesis, University of Innsbruck (2006)

  40. Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In: Proc. 33rd International Conference on Current Trends in Theory and Practice of Computer Science. LNCS, vol. 4362, pp. 579–590 (2007)

  41. Zankl, H., Middeldorp, A.: Satisfying KBO constraints. In: Proc. 18th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4533, pp. 389–403 (2007)

  42. Zankl, H., Middeldorp, A.: Increasing interpretations. In: Proc. 9th International Conference on Artificial Intelligence and Symbolic Computation. LNAI, vol. 5144, pp. 191–205 (2008)

  43. Zantema, H., Waldmann, J.: Termination by quasi-periodic interpretations. In: Proc. 18th International Conference on Rewriting Techniques and Applications. LNCS, vol. 4533, pp. 404–418 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Zankl.

Additional information

The first and third authors are supported by FWF (Austrian Science Fund) project P18763 and the second author is supported by the Grant-in-Aid for Young Scientists 20800022 of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zankl, H., Hirokawa, N. & Middeldorp, A. KBO Orientability. J Autom Reasoning 43, 173–201 (2009). https://doi.org/10.1007/s10817-009-9131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-009-9131-z

Keywords

Navigation