[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Symbolic Techniques in Satisfiability Solving

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Recent work has shown how to use binary decision diagrams for satisfiability solving. The idea of this approach, which we call symbolic quantifier elimination, is to view an instance of propositional satisfiability as an existentially quantified proposition formula. Satisfiability solving then amounts to quantifier elimination; once all quantifiers have been eliminated, we are left with either 1 or 0. Our goal in this work is to study the effectiveness of symbolic quantifier elimination as an approach to satisfiability solving. To that end, we conduct a direct comparison with the DPLL-based ZChaff, as well as evaluate a variety of optimization techniques for the symbolic approach. In comparing the symbolic approach to ZChaff, we evaluate scalability across a variety of classes of formulas. We find that no approach dominates across all classes. While ZChaff dominates for many classes of formulas, the symbolic approach is superior for other classes of formulas. Once we have demonstrated the viability of the symbolic approach, we focus on optimization techniques for this approach. We study techniques from constraint satisfaction for finding a good plan for performing the symbolic operations of conjunction and of existential quantification. We also study various variable-ordering heuristics, finding that while no heuristic seems to dominate across all classes of formulas, the maximum-cardinality search heuristic seems to offer the best overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aloul, F., Markov, I. and Sakallah, K.: MINCE: a static global variable-ordering for SAT and BDD, in Proc. IEEE 10th International Workshop on Logic and Synthesis, 2001, pp. 281–286.

  2. Aloul, F., Markov, I. and Sakallah, K.: FORCE: a fast and easy-to-implement variable-ordering heuristic, in Proc. of the 13th ACM Great Lakes Symposium on VLSI 2003, 2003, pp. 116–119.

  3. Amir, E. and McIlraith, S.: Solving satisfiability using decomposition and the most constrained subproblem, in LICS Workshop on Theory and Applications of Satisfiability Testing (SAT 2001), June 2001.

  4. Arnborg, S., Corneil, D. and Proskurowski, A.: Complexity of finding embeddings in a k-tree, SIAM J. Algebr. Discrete Math. 8 (1987), 277–284.

    MATH  MathSciNet  Google Scholar 

  5. Balcazar, J.: Self-reducibility, J. Comput. Syst. Sci. 41(3) (1990), 367–388.

    Article  MATH  MathSciNet  Google Scholar 

  6. Beatty, D. and Bryant, R.: Formally verifying a microprocessor using a simulation methodology, in Proc. 31st Design Automation Conference, 1994, pp. 596–602.

  7. Biere, A.: Resolve and expand, in: Proc. 7th Conf. on Theory and Applications of Satisfiability Testing (SAT 2004), 2004, pp. 238–246.

  8. Biere, A., Clarke, C. A. E., Fujita, M. and Zhu, Y.: Symbolic model checking using SAT procedures instead of BDD, in Proc. 36th Conf. on Design Automation, 1999, pp. 317–320.

  9. Block, M., Gröpl, C., Preuß, H., Proömel, H. L. and Srivastav, A.: Efficient ordering of state variables and transition relation partitions in symbolic model checking. Technical report, Institute of Informatics, Humboldt University of Berlin, 1997.

  10. Bodlaender, H. and Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs, J. Alogorithms 21 (1996), 358–402.

    Article  MATH  MathSciNet  Google Scholar 

  11. Bouquet, F.: Gestion de la dynamicite et enumeration d'implicants preniers, une approche fondee sur les Diagrammes de Decision Binaire. Ph.D. thesis, Universite de Privence, France, 1999.

  12. Bryant, R.: Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput, C35(8) (1986), 677–691.

    Article  Google Scholar 

  13. Burch, J., Clarke, E. and Long, D.: Symbolic model checking with partitioned transition relations, in VLSI 91, Proc. IFIP TC10/WG 10.5 International Conference on Very Large Scale Integration, Edinburgh, Scotland, 20–22 August, 1991, 1991, pp. 49–58

  14. Burch, J., Clarke, E., McMillan, K., Dill, D. and Hwang, L.: Symbolic model checking: 1020 states and beyond, Inf. Comput. 98(2) (1992), 142–170.

    Article  MATH  MathSciNet  Google Scholar 

  15. Chatalic, P. and Simon, L.: Multi-resolution on compressed sets of clauses, in Twelfth International Conference on Tools with Artificial Intelligence (IXTAI'00), 2000, pp. 2–10.

  16. Chung, P., Hajj, I. and Patel, J.: Efficient variable ordering heuristics for shared ROBDD, in Proc. 1993 IEEE Int. Symp. on Circuits and Systems (ISCA93), 1993, pp. 1690–1693.

  17. Cimatti, A. and Roveri, M.: Conformant planning via symbolic model checking, J. Artif. Intell. Res. 13 (2000), 305–338

    MATH  Google Scholar 

  18. Clarke, E., Grumberg, O. and Peled, D.: Model Checking, MIT Press, 1999.

  19. Coarfa, C., Demopoulos, D. D., San Miguel Aguirre, A., Subramanian, D. and Vardi, M.: Random 3-SAT: the plot thickens, Constraints (2003), 243–261.

  20. Crawford, J. and Baker, A.: Experimental results on the application of satisfiability algorithms to scheduling problems, in Proc. 12th Nat. Conf. on Artificial Intelligence, Vol. 2, 1994, pp. 1092–1097.

  21. Dalmau, V., Kolaitis, P. and Vardi, M.: Constraint satisfaction, bounded treewidth, and finite-variable logics, in Proceedings of 8th Int. Conf. on Principles and Practice of Constraint Programming (CP 2002), 2002, pp. 310–326.

  22. Damiano, R. F. and Kukula, J. H.: Checking satisfiability of a conjunction of BDDs, in: Proc. 40th Design Automation Conference (DAC 2003), 2003, pp. 818–823.

  23. Davis, M., Logemann, G. and Loveland, D.: A machine program for theorem proving. J. ACM 5 (1962), 394–397.

    Article  MATH  MathSciNet  Google Scholar 

  24. Davis, S. and Putnam, M.: A computing procedure for quantification theory, J. ACM 7 (1960), 201–215.

    Article  MATH  MathSciNet  Google Scholar 

  25. Dechter, R.: Constraint Processing, Morgan Kaufmann, 2003.

  26. Dechter, R. and Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif. Intell. 34 (1987), 1–38.

    Article  MATH  MathSciNet  Google Scholar 

  27. Dechter, R. and Rish, I.: Directional resolution: the Davis–Putnam procedure, revisited, in KR'94: Principles of Knowledge Representation and Reasoning, 1994, pp. 134–145.

  28. Downery, R. and Fellows, M.: Paraetrized Complexity, Springer-Verlag, 1999.

  29. Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M. and Vanfleet, W.: SBSAT: a state-based, BDD-based satisfiability solver, in Proc. 6th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT 2003), 2003, pp. 398–410.

  30. Freuder, E.: Complexity of k-tree structured constraint satisfaction problems, in Proc. 8th Nat. Conf. on Artificial Intelligence, 1990, pp. 4–9.

  31. Fujita, M., Fujisawa, H. and Kawato, N.: Evaluation and improvements of Boolean comparison method based on binary decision disgrams, in Proc. IEEE/ACM Int. conf. on Computer-Aided Design (ICCAD-88), 1988, pp. 2–5.

  32. Geist, D. and Beer, H.: Efficient model checking by automated ordering of transition relation partitions, in Proc. 6th Int. Conf. on computer Aided Verification (CAV 1994), 1994, pp. 299–310.

  33. Goldberg, E. and Novikov, Y.: BerkMin: a fast and robust SAT solver, in Proc. Design Automation and Test in Europe (DATE 2002), 2002, pp. 142–149.

  34. Groote, J. F.: Hiding propositional constants in BDDs, FMSD 8 (1996), 91–96.

    Article  Google Scholar 

  35. Gupta, A., Yang, Z., Ashar, P., Zhang, L. and Malik, S.: Partition-based decision heuristics for image computation using SAT and BDDs, in: Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD-01), 2001, pp. 286–292.

  36. Hojati, R., Krishman, S.C. and Brayton, R.K.: Early quantification and partitioned transition relations, in Proc. 1996 Int. Conf. on Computer Design (ICCD'96), 1996, pp. 12–19.

  37. Huang, J. and Darwiche, A.: A structure-based variable ordering heuristic for SAT, in Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), 2003, 1167–1172.

  38. Jon, H. and Somenzi, F.: CirCUs: hybrid satisfiability solver, in Proc. of the 7th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT 2004), 2004, pp. 47–55.

  39. Kautz, H. and Selman, B.: Planning as satisfiability, in Proc. 10th Eur. conf. on AI (ECAI 92), 1992, pp. 359–363.

  40. Khurshid, S., Marinov, D., Shlyyakhter, I. and Jackson, D.: A case for efficient solution enumeration, in Proc. 6th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT 2003), 2001, pp. 272–286.

  41. Koster, A., Bodlaender, H. and van Hoesel, S.: Treewidth: computational experiments. Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin.

  42. Le Berre, D. and Simon, L.: The essentials of the SAT'03 competition, in Proc. 6th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT 2003), 2003, pp. 452–467.

  43. Malik, S., Wang, A., Brayton, R. and Sangiovanni Vincentelli, A.: Logic verification using binary decision diagrams in a logic synthesis environment, in: Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD-88), 1988, pp. 6–9.

  44. Minato, S.: Binary Decision Diagrams and Applications to VLSI CAD. Kluwer, 1996.

  45. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S.: Chaff: engineering an efficient SAT solver, in Proc. of 39th Design Automation Conference (DAC 2001), 2001, pp. 530–535.

  46. Motter, D.B. and Markov, I.L.: A compressed breadth-first search for satisfiability, in Proc. 4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX 2002), Vol. 2409 of Lecture Notes in Computer Science, 2002a, pp. 29–42.

  47. Motter, D.B. and Markov, I.L.: On proof systems behind efficient SAT solvers, in Proc. of 5th Int. Symp. on the Theory and Applications of Satisfiability Testing (SAT 2002), 2002b, pp. 206–213.

  48. Pan, G. and Vardi, M.Y.: Symbolic decision procedures for QBF, in Proceedings of 10th Int. Conf. on Principles and Practice of Constraint Programming (CP 2004), 2004, pp. 453–467.

  49. Ranjan, R., Aziz, A., Brayton, R., Plessier, B. and Pixley, C.: Efficient BDD algorithms for FSM synthesis and verification, in Proc. of IEEE/ACM Int. Workshop on Logic Synthesis, 1995.

  50. San Miguel Aguirre, A. and Vardi, M.Y.: Random 3-SAT and BDDs: the plot thickens further, in Proc. of the 7th Int. Conf. Principles and Practice of Constraint Programming (CP 2001), 2001, pp. 121–136.

  51. Schaefer, T.: the Complexity of satisfiability problems, in Proc. of the 10th annual ACM symposium on Theory of Computing (STOC'78), 1978, pp. 216–226.

  52. Selman, B., Mitchell, D. G. and Levesque, H. J.: Generating hard satisfiability problems, Artif. Intell. 81(1–2) (1996), 17–29.

    Article  MathSciNet  Google Scholar 

  53. Somenzi, F.: ‘CUDD: CU Decision Diagram package’. http://vlsi.colorado.edu/~fabio/CUDD/, 1998.

  54. Tarjan, R. E. and Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, tests acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13(3) (1984), 566–579.

    Article  MATH  MathSciNet  Google Scholar 

  55. Uribe, T.E. and Stickel, M.E.: Ordered binary decision diagrams and the Davis–Putnam procedure, in 1st Int. Conf. on Constraints in Computational Logics, 1994, pp. 34–39.

  56. Urquhart, A.: The complexity of propositional proofs, Bull. Symb. Log. 1 (1995), 425–467.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Pan.

Additional information

★A preliminary version of the paper was presented in SAT'04. Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435, IIS-9978135, EIA-0086264, ANI-0216467, and by BSF grant 9800096.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, G., Vardi, M.Y. Symbolic Techniques in Satisfiability Solving. J Autom Reasoning 35, 25–50 (2005). https://doi.org/10.1007/s10817-005-9009-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-005-9009-7

Key words

Navigation