Abstract
This study was performed to investigate the electrochemical oxidation of anionic surfactants. In particular, a synthetic solution of sodium dodecyl benzene sulfonate and a real car wash wastewater were treated by galvanostatic electrolysis using a Ti–Ru–Sn ternary oxide and a boron-doped diamond (BDD) anode. Measurements of the Chemical Oxygen Demand (COD) and the concentration of the anionic surfactants were used to follow the oxidation. Using the Ti–Ru–Sn ternary oxide anode, the complete removal of COD and sodium dodecyl benzene sulfonate was obtained only in the presence of chloride ions that act as inorganic mediators. The oxidation rate was almost independent of current density and electrolyte flow rate. In the case of BDD the mineralisation of the sodium dodecyl benzene sulfonate was achieved in all experimental conditions due to reaction with hydroxyl radicals electrogenerated on the diamond surface during electrolysis. The COD removal rate increased with increase in electrolyte flow rate, indicating that the oxidation was mass-transfer controlled. Comparison of the results of the two electrodes showed that chlorine mediated oxidation at the Ti–Ru–Sn ternary oxide anode allowed a faster COD removal of both the synthetic solution and real car wash wastewater.
Similar content being viewed by others
References
J. Feng D.C. Johnson (1991) J. Electrochem. Soc. 138 3328
A.M. Polcaro S. Palmas (1997) Ind. Eng. Chem. Res. 36 1791
F. Bonfatti S. Ferro F. Levezzo M. Malacarne G. Lodi A. De Battisti (1999) J. Electrochem. Soc. 146 2175
J. Iniesta J. Gonzalez-Garcia E. Exposito V. Montiel A. Aldaz (2001) Wat. Res. 35 3291
A.M. Polcaro S. Palmas F. Renoldi M. Mascia (1999) J. Appl. Electrochem. 29 147
N. Belhadj Tahar A. Savall (1998) J. Electrochem. Soc. 145 3427
K.T. Kawagoe D.C. Johnson (1994) J. Electrochem. Soc. 141 3404
W. Haenni H. Baumann Ch. Comninellis D. Gandini P. Niedermann A. Perret N. Skinner (1998) Diamond and Rel. Mat. 7 569
G. Fotí D. Gandini Ch. Comninellis A. Perret W. Haenni (1999) Electrochem. Solid St. 2 228
M.A. Rodrigo P.A. Michaud I. Duo M. Panizza G. Cerisola Ch. Comninellis (2001) J. Electrochem. Soc. 148 D60
L. Gherardini P.A. Michaud M. Panizza Ch. Comninellis N. Vatistas (2001) J. Electrochem. Soc. 148 D78
M. Panizza P.A. Michaud G. Cerisola Ch. Comninellis (2001) J. Electroanal. Chem. 507 206
A.M. Polcaro A. Vacca S. Palmas M. Mascia (2003) J. Appl. Electrochem. 33 885
Ch. Comninellis (1994) Electrochim. Acta 39 1857
Ch. Comninellis A. Nerini (1995) J. Appl. Electrochem. 25 23
M. Panizza C. Bocca G. Cerisola (2000) Wat. Res. 34 2601
F. Bonfatti S. Ferro F. Levezzo M. Malacarne G. Lodi A. De Battisti (2000) J. Electrochem. Soc. 147 592
M. Panizza G. Cerisola (2003) Electrochim. Acta 48 1515
J. Naumczyk L. Szpyrkowicz (1996) Wat. Sci. Tech. 34 17
J.-S. Do W.-C. Yeh (1995) J. Appl. Electrochem. 25 483
S. Zor B. Yazici M. Erbil H. Galip (1998) Wat. Res. 32 579
G. Lissens J. Pieters M. Verhaege L. Pinoy W. Verstraete (2003) Electrochim. Acta 48 1655
S. Trasatti (Ed.), ‘Electrodes of Conductive Metallic Oxides Part A’ (Elsevier, Amsterdam, 1981), Chapter 7
Ch. Comninellis C. Pulgarin (1991) J. Appl. Electrochem. 21 703
B. Marselli J. Garcia-Gomez P.-A. Michaud M.A. Rodrigo Ch. Comninellis (2003) J. Electrochem. Soc. 150 D79
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Panizza, M., Delucchi, M. & Cerisola, G. Electrochemical degradation of anionic surfactants. J Appl Electrochem 35, 357–361 (2005). https://doi.org/10.1007/s10800-005-0793-x
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10800-005-0793-x