[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Electrochemical degradation of anionic surfactants

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study was performed to investigate the electrochemical oxidation of anionic surfactants. In particular, a synthetic solution of sodium dodecyl benzene sulfonate and a real car wash wastewater were treated by galvanostatic electrolysis using a Ti–Ru–Sn ternary oxide and a boron-doped diamond (BDD) anode. Measurements of the Chemical Oxygen Demand (COD) and the concentration of the anionic surfactants were used to follow the oxidation. Using the Ti–Ru–Sn ternary oxide anode, the complete removal of COD and sodium dodecyl benzene sulfonate was obtained only in the presence of chloride ions that act as inorganic mediators. The oxidation rate was almost independent of current density and electrolyte flow rate. In the case of BDD the mineralisation of the sodium dodecyl benzene sulfonate was achieved in all experimental conditions due to reaction with hydroxyl radicals electrogenerated on the diamond surface during electrolysis. The COD removal rate increased with increase in electrolyte flow rate, indicating that the oxidation was mass-transfer controlled. Comparison of the results of the two electrodes showed that chlorine mediated oxidation at the Ti–Ru–Sn ternary oxide anode allowed a faster COD removal of both the synthetic solution and real car wash wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Feng D.C. Johnson (1991) J. Electrochem. Soc. 138 3328

    Google Scholar 

  2. A.M. Polcaro S. Palmas (1997) Ind. Eng. Chem. Res. 36 1791

    Google Scholar 

  3. F. Bonfatti S. Ferro F. Levezzo M. Malacarne G. Lodi A. De Battisti (1999) J. Electrochem. Soc. 146 2175

    Google Scholar 

  4. J. Iniesta J. Gonzalez-Garcia E. Exposito V. Montiel A. Aldaz (2001) Wat. Res. 35 3291

    Google Scholar 

  5. A.M. Polcaro S. Palmas F. Renoldi M. Mascia (1999) J. Appl. Electrochem. 29 147

    Google Scholar 

  6. N. Belhadj Tahar A. Savall (1998) J. Electrochem. Soc. 145 3427

    Google Scholar 

  7. K.T. Kawagoe D.C. Johnson (1994) J. Electrochem. Soc. 141 3404

    Google Scholar 

  8. W. Haenni H. Baumann Ch. Comninellis D. Gandini P. Niedermann A. Perret N. Skinner (1998) Diamond and Rel. Mat. 7 569

    Google Scholar 

  9. G. Fotí D. Gandini Ch. Comninellis A. Perret W. Haenni (1999) Electrochem. Solid St. 2 228

    Google Scholar 

  10. M.A. Rodrigo P.A. Michaud I. Duo M. Panizza G. Cerisola Ch. Comninellis (2001) J. Electrochem. Soc. 148 D60

    Google Scholar 

  11. L. Gherardini P.A. Michaud M. Panizza Ch. Comninellis N. Vatistas (2001) J. Electrochem. Soc. 148 D78

    Google Scholar 

  12. M. Panizza P.A. Michaud G. Cerisola Ch. Comninellis (2001) J. Electroanal. Chem. 507 206

    Google Scholar 

  13. A.M. Polcaro A. Vacca S. Palmas M. Mascia (2003) J. Appl. Electrochem. 33 885

    Google Scholar 

  14. Ch. Comninellis (1994) Electrochim. Acta 39 1857

    Google Scholar 

  15. Ch. Comninellis A. Nerini (1995) J. Appl. Electrochem. 25 23

    Google Scholar 

  16. M. Panizza C. Bocca G. Cerisola (2000) Wat. Res. 34 2601

    Google Scholar 

  17. F. Bonfatti S. Ferro F. Levezzo M. Malacarne G. Lodi A. De Battisti (2000) J. Electrochem. Soc. 147 592

    Google Scholar 

  18. M. Panizza G. Cerisola (2003) Electrochim. Acta 48 1515

    Google Scholar 

  19. J. Naumczyk L. Szpyrkowicz (1996) Wat. Sci. Tech. 34 17

    Google Scholar 

  20. J.-S. Do W.-C. Yeh (1995) J. Appl. Electrochem. 25 483

    Google Scholar 

  21. S. Zor B. Yazici M. Erbil H. Galip (1998) Wat. Res. 32 579

    Google Scholar 

  22. G. Lissens J. Pieters M. Verhaege L. Pinoy W. Verstraete (2003) Electrochim. Acta 48 1655

    Google Scholar 

  23. S. Trasatti (Ed.), ‘Electrodes of Conductive Metallic Oxides Part A’ (Elsevier, Amsterdam, 1981), Chapter 7

  24. Ch. Comninellis C. Pulgarin (1991) J. Appl. Electrochem. 21 703

    Google Scholar 

  25. B. Marselli J. Garcia-Gomez P.-A. Michaud M.A. Rodrigo Ch. Comninellis (2003) J. Electrochem. Soc. 150 D79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Panizza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panizza, M., Delucchi, M. & Cerisola, G. Electrochemical degradation of anionic surfactants. J Appl Electrochem 35, 357–361 (2005). https://doi.org/10.1007/s10800-005-0793-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-0793-x

Key words

Navigation