[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Parallel Computation of Discrete Orthogonal Moment on Block Represented Images Using OpenMP

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Herein, a parallel implementation of Discrete Orthogonal moments on block represented images is investigated. Moments and moment functions have been used widely as features for image analysis and pattern recognition tasks. The main disadvantage of all moment sets, is the high computational cost which is increased as higher-order moments are involved in the computations. In image block representation (IBR) the image is represented by homogeneous areas which are called blocks. The IBR allows moment computation with zero computational error for binary images, low computational error for gray images, low computational complexity, while can achieve high processing rates. The results from parallel implementation on a multicore computer using OpenMP, exhibit significant performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)

    MATH  Google Scholar 

  2. Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  3. Teh, C.-H., Chin, R.T.: On image analysis by the method of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10, 496–513 (1988)

    Article  MATH  Google Scholar 

  4. Flusser, J., Suk, T.: Rotation moment invariants for recognition of symmetric objects. IEEE Trans. Image Process. 15, 3784–3790 (2006)

    Article  MathSciNet  Google Scholar 

  5. Mukundan, R.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10, 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yap, P.T., et al.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12, 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  7. Yap, P.T., et al.: Image analysis using Hahn moments. IEEE Trans. PAMI 29, 2057–2062 (2007)

    Article  Google Scholar 

  8. Zhou, J., et al.: Image analysis by discrete orthogonal Hahn moments. In: Image Analysis and Recognition. ICIAR 2005, Lecture Notes in Computer Science, vol. 3656. Springer, Berlin, Heidelberg (2005)

  9. Karmouni, H., et al.: Fast 3D image reconstruction by cuboids and 3D Charlier’s moments. J. Real-Time Image Process. 17, 1–17 (2020)

    Article  Google Scholar 

  10. Jahid, T., et al.: Image analysis by Meixner moments and a digital filter. Multimed. Tools Appl. 77, 19811–19831 (2018)

    Article  Google Scholar 

  11. Wu, Y., Liao, S.: Image reconstruction from discrete orthogonal Racah moments. In: IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (2016)

  12. Flusser, J., Zitová, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley (2009)

    Book  MATH  Google Scholar 

  13. Akhmedova, F., Liao, S.: Face recognition using discrete orthogonal Hahn moments. In: International Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 9 (2015)

  14. Mesbah, A., et al.: Robust reconstruction and generalized dual Hahn moments invariants extraction for 3D images. 3D Res. 8, 1, Article 113 (2017)

  15. El Mallahi, M., et al.: Radial Hahn moment invariants for 2D and 3D image recognition. Int. J. Autom. Comput. 15(3), 277–289 (2018)

    Article  Google Scholar 

  16. Mesbah, A., et al.: Fast and efficient computation of three-dimensional Hahn moments. J. Electron. Imaging 25(6), 061621 (2016)

    Article  Google Scholar 

  17. Yang, T., et al.: Image feature extraction in encrypted domain with privacy-preserving Hahn moments. IEEE Access 6, 47521–47534 (2018)

    Article  Google Scholar 

  18. Ahmad, S., Lu, Z.-M.: Geometric distortions-invariant digital watermarking using scale-invariant feature transform and discrete orthogonal image moments. In: Digital Rights Management: Concepts, Methodologies, Tools, and Applications (2013). https://doi.org/10.4018/978-1-4666-2136-7.ch013

  19. Benouini, R., et al.: Efficient image classification by using improved dual Hahn moment invariants. In: 2018 International Conference on Intelligent Systems and Computer Vision (ISCV) (2018)

  20. Sayyouri, M., et al.: Improving the performance of image classification by Hahn moment invariants. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30, 2381–2394 (2013)

    Article  Google Scholar 

  21. Mukundan, R.: Some computational aspects of discrete orthonormal moments. IEEE Trans. Image Process. 13(8), 1055–1059 (2004)

    Article  MathSciNet  Google Scholar 

  22. Spiliotis, ΙΜ, Mertzios, B.G.: Fast algorithms for basic processing and analysis operations on block represented binary images. Pattern Recognit. Lett. 17, 1437–1450 (1996)

    Article  Google Scholar 

  23. Spiliotis, I., Mertzios, B.: A fast parallel skeletonization algorithm on block represented binary images. Elektrik 1, 161–173 (1997)

    Google Scholar 

  24. Spiliotis, I., Mertzios, B.: A fast skeleton algorithm on block represented binary images. In: 13th International Conference on Digital Signal Processing (DSP97), Santorini, Hellas (1997)

  25. Gatos, B., Perantonis, S., Papamarkos, N.: Accelerated Hough transform using rectangular block decomposition. Electron. Lett. 32, 730–732 (1996)

    Article  Google Scholar 

  26. Spiliotis, I.M., Mertzios, B.G.: Real-time computation of two-dimensional moments on binary images using image block representation. IEEE Trans. Image Process. 7, 1609–1615 (1998)

    Article  Google Scholar 

  27. Spiliotis, I.M., Boutalis, Y.S.: Parameterized real-time moment computation on gray images using block techniques. J. Real-Time Image Process. 6(2), 81–91 (2011)

    Article  Google Scholar 

  28. Spiliotis, I.M., Boutalis, Y.: Fast and real-time moment computation methods of gray images using image block representation. In: Proceedings of 5th IASTED International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA-2008), pp. 323–328, Innsbruck, Austria (2008)

  29. Spiliotis, I.M., Karampasis, N.D., Boutalis, Y.S.: Fast computation of Hahn moments on gray images using block representation. J. Electron. Imaging (2020). https://doi.org/10.1117/1.JEI.29.1.013020

    Article  Google Scholar 

  30. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in OpenMP. Academic Press, Cambridge (2001)

    Google Scholar 

  31. Barth, M., et al.: Best Practice Guide—Intel Xeon Phi (2014). http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/

  32. Beyer, J., Larkin, J.: Targeting GPUs with OpenMP4.5 device directives. In: NVIDIA GPU Technology Conference, Silicon Valley (2016)

  33. Szwoch, G., Ellwart, D., Czyzewski, A.: Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform. J. Real-Time Image Process. 11, 111–125 (2016)

    Article  Google Scholar 

  34. Hosny, K., et al.: Fast computation of 2D and 3D Legendre moments using multi-core CPUs and GPU parallel architectures. J. Real-Time Image Process. (2017). https://doi.org/10.1007/s11554-017-0708-1

    Article  Google Scholar 

  35. Mahmoudi, R., Akil, M., Hedi, B.M.: Concurrent computation of topological watershed on shared memory parallel machines. Parallel Comput. 69, 78–97 (2017)

    Article  MathSciNet  Google Scholar 

  36. Lu, Y., et al.: Parallelizing image feature extraction algorithms on multi-core platforms. J. Parallel Distrib. Comput. 92, 1–14 (2016)

    Article  Google Scholar 

  37. Spiliotis, I.M., Bekakos, M.P., Boutalis, Y.S.: Parallel implementation of the Image block representation using OpenMP. J. Parallel Distrib. Comput. 137, 134–147 (2020). https://doi.org/10.1016/j.jpdc.2019.11.006

    Article  Google Scholar 

  38. Camacho-Bello, C., et al.: Reconstruction of color biomedical images by means of quaternion generic Jacobi–Fourier moments in the framework of polar pixels. J. Med. Imaging 3(1), 014004 (2016)

    Article  Google Scholar 

  39. Hosny, K.M., Darwish, M.M.: Feature extraction of color images using quaternion moments. In: Recent Advances in Computer Vision: Theories and Applications. Springer (2019)

  40. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill (2003)

    Google Scholar 

  41. Hutcheson, A., Natoli, V.: Memory Bound vs. Compute Bound: A Quantitative Study of Cache and Memory Bandwidth in High-Performance Applications. Stone Ridge Technology, Internal White Paper (2011)

  42. Gentile, A., Sander, S., Wills, L., Wills, S.: The impact of grain size on the efficiency of embedded SIMD image processing architectures. J. Parallel Distrib. Comput. 64, 1318–1327 (2004)

    Article  MATH  Google Scholar 

  43. Intel Corporation: Avoiding and Identifying False Sharing Among Threads (2011). https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

  44. Karp, A.H., Flatt, H.P.: Measuring parallel processor performance. Commun. ACM 33, 539–543 (1990)

    Article  Google Scholar 

  45. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

  46. DIV2K Dataset: DIVerse 2K Resolution High Quality Images as Used for the Challenges @ NTIRE (CVPR 2017 and CVPR 2018) and @ PIRM (ECCV 2018). https://data.vision.ee.ethz.ch/cvl/DIV2K/

  47. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  48. Chen, S., Dongarra, J., Hsiung, C.: Multiprocessing linear algebra algorithms on the CRAY X-MP-2: experiences with small granularity. J. Parallel Distrib. Comput. 1, 22–31 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by computational time Granted from the Greek Research & Technology Network (GRNET) in the National HPC facility - ARIS - under project ID PA170601-PIBR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraklis M. Spiliotis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiliotis, I.M., Sitaridis, C. & Bekakos, M.P. Parallel Computation of Discrete Orthogonal Moment on Block Represented Images Using OpenMP. Int J Parallel Prog 49, 440–462 (2021). https://doi.org/10.1007/s10766-021-00713-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-021-00713-2

Keywords

Navigation