Abstract
Nowadays, it is increasingly common to detect land cover changes using remote sensing multispectral images captured at different time-frames over the same area. A large part of the available change detection (CD) methods focus on pixel-based operations. The use of spectral–spatial techniques helps to improve the accuracy results but also implies a significant increase in processing time. In this paper, a Graphic Processor Unit (GPU) framework to perform object-based CD in multitemporal remote sensing hyperspectral data is presented. It is based on Change Vector Analysis with the Spectral Angle Mapper distance and Otsu’s thresholding. Spatial information is taken into account by considering watershed segmentation. The GPU implementation achieves real-time execution and speedups of up to 46.5\(\times \) with respect to an OpenMP implementation.
Similar content being viewed by others
Notes
The datasets along with the reference maps created and some experimental results can be downloaded from: https://wiki.citius.usc.es/hiperespectral:cva.
References
Bannari, A., Morin, D., Bonn, F., Huete, A.: A review of vegetation indices. Remote Sens. Rev. 13(1–2), 95–120 (1995)
Bernabé, S., Sánchez, S., Plaza, A., López, S., Benediktsson, J.A., Sarmiento, R.: Hyperspectral unmixing on GPUs and multi-core processors: a comparison. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(3), 1386–1398 (2013)
Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)
Bovolo, F., Bruzzone, L.: The time variable in data fusion: a change detection perspective. IEEE Geosci. Remote Sens. Mag. 3(3), 8–26 (2015)
Bruzzone, L., Prieto, D.F.: Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 38(3), 1171–1182 (2000)
Celik, T.: Unsupervised change detection in satellite images using principal component analysis and-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009)
CESGA: Finis Terrae II Quick start guide (2017). https://cesga.es/en/paginas/descargaDocumento/id/231
Chen, Z., Vatsavai, R.R., Ramachandra, B., Zhang, Q., Singh, N., Sukumar, S.: Scalable nearest neighbor based hierarchical change detection framework for crop monitoring. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1309–1314. IEEE (2016)
Christophe, E., Michel, J., Inglada, J.: Remote sensing processing: from multicore to GPU. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 643–652 (2011)
Dennison, P.E., Halligan, K.Q., Roberts, D.A.: A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper. Remote Sens. Environ. 93(3), 359–367 (2004)
Falco, N., Mura, M.D., Bovolo, F., Benediktsson, J.A., Bruzzone, L.: Change detection in VHR images based on morphological attribute profiles. Geosci. Remote Sens. Lett. IEEE 10(3), 636–640 (2013)
Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Advances in spectral–spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)
Garea, A.S., Ordóñez, A., Heras, D.B., Argüello, F.: HypeRvieW: an open source desktop application for hyperspectral remote-sensing data processing. Int. J. Remote Sens. 37(23), 5533–5550 (2016)
Ghosh, A., Subudhi, B.N., Bruzzone, L.: Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images. IEEE Trans. Image Process. 22(8), 3087–3096 (2013)
Hao, M., Shi, W., Zhang, H., Li, C.: Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci. Remote Sens. Lett. 11(1), 210–214 (2014)
Ke, J., Sowmya, A., Guo, Y., Bednarz, T., Buckley, M.: Efficient GPU computing framework of cloud filtering in remotely sensed image processing. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2016)
Kempeneers, P., Sedano, F., Strobl, P., McInerney, D.O., San-Miguel-Ayanz, J.: Increasing robustness of postclassification change detection using time series of land cover maps. IEEE Trans. Geosci. Remote Sens. 50(9), 3327–3339 (2012)
Keshava, N.: Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens. 42(7), 1552–1565 (2004)
López-Fandiño, J., Quesada-Barriuso, P., Heras, D.B., Argüello, F.: Efficient ELM-based techniques for the classification of hyperspectral remote sensing images on commodity GPUs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 8(6), 2884–2893 (2015)
Malila, W.A.: Change vector analysis: an approach for detecting forest changes with landsat. In: LARS Symposia, p. 385 (1980)
Nielsen, A.A.: Kernel based orthogonalization for change detection in hyperspectral image data. In: 6th EARSeL Workshop on Imaging Spectroscopy (2013)
Nvidia: CUBLAS Library User Guide (2013)
Nvidia: NVIDIA Tesla P100. The Most Advanced Data Center Accelerator Ever Built. Featuring Pascal P100, the Worlds Fastest GPU (2016)
Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)
Pan, W., Qin, K., Chen, Y.: An adaptable-multilayer fractional Fourier transform approach for image registration. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 400–414 (2009)
Plaza, A., Du, Q., Chang, Y.L., King, R.L.: High performance computing for hyperspectral remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(3), 528–544 (2011)
Plaza, A., Plaza, J., Paz, A., Sanchez, S.: Parallel hyperspectral image and signal processing. IEEE Signal Process. Mag. 28(3), 119–126 (2011)
Quesada-Barriuso, P., Argüello, F., Heras, D.B.: Computing efficiently spectral–spatial classification of hyperspectral images on commodity GPUs. In: Tweedale, J., Jain, L. (eds.) Recent Advances in Knowledge-Based Paradigms and Applications, pp. 19–42. Springer, Berlin (2014)
Quesada-Barriuso, P., Heras, D.B., Argüello, F.: Efficient 2D and 3D watershed on graphics processing unit: block-asynchronous approaches based on cellular automata. Comput. Electr. Eng. 39(8), 2638–2655 (2013)
Quesada-Barriuso, P., Heras, D.B., Argüello, F.: Efficient GPU asynchronous implementation of a watershed algorithm based on cellular automata. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 79–86. IEEE (2012)
Sánchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs. J. Real Time Image Proc. 10(3), 469–483 (2015)
Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)
Singh, S., Talwar, R.: Review on different change vector analysis algorithms based change detection techniques. In: 2013 IEEE Second International Conference on Image Information Processing (ICIIP), pp. 136–141. IEEE (2013)
Tarabalka, Y., Benediktsson, J.A., Chanussot, J., Tilton, J.C.: Multiple spectral–spatial classification approach for hyperspectral data. IEEE Trans. Geosci. Remote Sens. 48(11), 4122–4132 (2010)
Van der Meer, F.D., van der Werff, H., van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J., Woldai, T.: Multi-and hyperspectral geologic remote sensing: a review. Int. J. Appl. Earth Obs. Geoinf. 14(1), 112–128 (2012)
Volpi, M., Tuia, D., Bovolo, F., Kanevski, M., Bruzzone, L.: Supervised change detection in vhr images using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 20, 77–85 (2013)
Yang, B., Yang, M., Plaza, A., Gao, L., Zhang, B.: Dual-mode FPGA implementation of target and anomaly detection algorithms for real-time hyperspectral imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(6), 2950–2961 (2015)
Zhang, W., Luo, G., Shen, L., Page, T., Li, P., Jiang, M., Maass, P., Cong, J.: FPGA acceleration by asynchronous parallelization for simultaneous image reconstruction and segmentation based on the Mumford–Shah regularization. In: SPIE Optical Engineering + Applications, p. 96000H. International Society for Optics and Photonics (2015)
Zhu, H., Cao, Y., Zhou, Z., Gong, M.: Parallel multi-temporal remote sensing image change detection on GPU. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), pp. 1898–1904. IEEE (2012)
Acknowledgements
This work has received financial support from the Ministry of Science and Innovation, Government of Spain, co-funded by the FEDER funds of the European Union, under Contracts TIN2013-41129-P and TIN2016-76373-P; Xunta de Galicia, Programme for Consolidation of Competitive Research Groups Ref. 2014/008; the Consellería de Cultura, Educación e Ordenación Universitaria (Accreditation 2016-2019, ED431G/08); and the European Regional Development Fund (ERDF).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
López-Fandiño, J., B. Heras, D., Argüello, F. et al. GPU Framework for Change Detection in Multitemporal Hyperspectral Images. Int J Parallel Prog 47, 272–292 (2019). https://doi.org/10.1007/s10766-017-0547-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10766-017-0547-5