[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Parallel Implementation of 2-D Telegraphic Equation on MPI/PVM Cluster

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

In this paper, a parallel implementation of the Iterative Alternating Direction Explicit method by D’Yakonov (IADE-DY) to solve 2-D telegraphic problem on a distributed system using Message Passing Interface (MPI) and Parallel Virtue Machine (PVM) are presented. The parallelization of the program is implemented by a domain decomposition strategy. A Single Program Multiple Data (SPMD) model is employed for the implementation. The implementation is discussed in relation to means of the parallel performance strategies and analysis. The model enhances overlap communication and computation to avoid unnecessary synchronization, hence, the method yields significant speedup. The level of speedup observed from tables as the mesh increases are in the range of 5–10%. Improvement has been achieved by numbers of tables and figures in our experiment. We present some analyses that are helpful for speedup and efficiency. It is concluded that the efficiency is strongly dependent on the grid size, block numbers and the number of processors for both MPI and PVM. Different strategies to improve the computational efficiency are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso J.M., Mawhin J., Ortega R.: Bounded solutions of second order semilinear evolution equations and applications to telegraph equation. J. Math Pures Appl. 78, 49–63 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aloy R., Casaban M.C., Caudillomate L.A., Jodar L.: Computing the variable coefficient telegraph equation using a discrete eigen functions method. Comput. Math. Appl. 54, 448–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barry W., Michael A.: Parallel Programming Techniques and Application using Networked Workstation and Parallel Computers. Prentice Hall, New Jersy (2003)

    Google Scholar 

  4. Beverly, A., et al.: The Algorithmic Structure Design Space in Parallel Programming. Wesley Professional (2005)

  5. Chan T., Saied F.: Hypercube Multiprocessors. SIAM, Philadelphia (1987)

    Google Scholar 

  6. Chi-Chung, H., Ka-Kaung, G., et al.: Solving partial differential equations on a network of workstations. IEEE, pp. 194–200 (1994)

  7. Chypher, R., Ho, A., et al.: Architectural requirements of parallel scientific applications with explicit Communications. In: Proceedings of Computer Architecture (ISCA ’93), pp. 2–13 (1993)

  8. Coelho P.J., Carvalho M.G.: Application of a domain decomposition technique to the mathematical modeling of utility boiler. J. Numer. Methods Eng. 36, 3401–3419 (1993)

    Article  Google Scholar 

  9. D’Ambra P., Danelutto M., Daniela S., Marco L.: Advance environments for parallel and distributed applications: a view of current status. Parallel Comput. 28, 1637–1662 (2002)

    Article  MATH  Google Scholar 

  10. Durst, F., Perie, M., Chafer, D., Schreck, E.: Parallelization of efficient numerical methods for flows in complex geometries. Flow Simulation with High Performance Computing I, pp. 79–92. Vieweg, Braunschelweig (1993)

  11. Eduardo J.H., Yero M.A., Amaral H.: Speedup and scalability analysis of master-slave applications on large heterogeneous clusters. J. Parallel Distrib. Comput. 67(11), 1155–1167 (2007)

    Article  MATH  Google Scholar 

  12. El-Azah M.S., El-Gamel M.: A numerical algorithm for the solution of telegraph equation. Appl. Math Comput. 190, 757–764 (2007)

    Article  MathSciNet  Google Scholar 

  13. Evans D.J., Hassan B.: Numerical solution of the telegraph equation by the AGE method. Int. J. Comput. Math. 80(10), 1289–1297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Evans D.J., Sahimi M.S.: The alternating group explicit iterative method for parabolic equations I: 2-Dimensional problems. Int. J. Comput. Math. 24, 311–341 (1988)

    Article  MATH  Google Scholar 

  15. Fan C., Jiannong C., Yudong S.: High abstractions for message passing parallel programming. Parallel Comput. 29, 1589–1621 (2003)

    Article  Google Scholar 

  16. Foster I., Geist J., Groop W., Lust E.: Wide-area implementations of the MPI. Parallel Comput. 24, 1735–1749 (1998)

    Article  Google Scholar 

  17. Fox, G.: Technical Report CPS 713, Syracure University (1996)

  18. Geist A., Beguelin A., Dongarra J.: Parallel Virtual Machine (PVM). MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  19. Geist G.A., Sunderami V.M.: Network based concurrent computing on the PVM System. Concurr. Pract. Experience 4, 293–311 (1992)

    Article  Google Scholar 

  20. Groop W., Lusk E., Skjellum A.: Using MPI, Portable and Parallel Programming with the Message Passing Interface. 2nd edn. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  21. Guang-Wei Y., Long-Jun S., Yu-Lin Z.: Unconditional stability of parallel alternating difference Schemes for Semilinear parabolic systems. Appl. Math. Comput. 117, 267–283 (2001)

    Article  MathSciNet  Google Scholar 

  22. Lixing, M., Frederick, C., Harris, J.: Technical Report Department of Computer Science University of Nevada Reno, NV 89557 (1998)

  23. Mehdi, D., Ali, S.: A numerical method for solving the hyperbolic telegraph equation (2007) http://www.interscience.wiley.com

  24. Metaxas A.C., Meredith R.J.: Industrial Microwave, Heating. Peter Peregrinus, London (1993)

    Google Scholar 

  25. Mitchell A.R., Fairweather G.: Improved forms of the alternating direction methods of douglas, peaceman and rachford for solving parabolic and elliptic equations. Numer. Maths 6, 285–292 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mohanty R.K.: An unconditionally stable difference schemes for the solution of multi-dimensional telegraph equations. Int. J. Comput. Math. 86(12), 2061–2071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peaceman D.W., Rachford H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 8(1), 28–41 (1955)

    MathSciNet  Google Scholar 

  28. Peizong L., Kedem Z.: Automatic data and computation decomposition on distributed memory parallel computers. ACM Trans. Programm. Lang. Syst. 24(1), 1–50 (2002)

    Article  Google Scholar 

  29. Quinn M.J.: Parallel Programming in C. MC-Graw Hill Higher Education, New York (2001)

    Google Scholar 

  30. Rathish Kumar B.V. et al.: A parallel MIMD Cell partitioned ADI solver for parabolic partial differential equations on VPP 700. Parallel Comput. 42, 324–340 (2001)

    MathSciNet  Google Scholar 

  31. Reza, A., Borhanifar, A.: An unconditionally stable parallel difference scheme for telegraph equation (2003)

  32. Roussy G., Pearcy J.A.: Foundations and Industrial Applications of Microwaves and Radio Frequency Fields. John Wiley, New York (1995)

    Google Scholar 

  33. Sahimi M.S., Sundararajan E., Subramaniam M., Hamid N.A.A.: The D’Yakonov fully explicit variant of the iterative decomposition method. Int. J. Comput. Math. Appl. 42, 1485–1496 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sahni, V.T.: Performance metrics: keeping the focus in routine. IEEE parallel and distributed technology, Spring pp. 43–56 (1996)

  35. Smith G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. 3rd edn. Oxford University Press, New York (1985)

    MATH  Google Scholar 

  36. Snir M., Otto S., et al.: MPI the Complete Reference. 2nd edn. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  37. Sun X.H., Gustafson J.: Toward a better parallel performance metric. Parallel Comput. 17, 456–483 (1991)

    Article  Google Scholar 

  38. Tian M., Yang D.: Parallel finite-difference schemes for heat equation based upon overlapping domain decomposition. Appl. Maths Comput. 186, 1276–1292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Uzezi Ewedafe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewedafe, S.U., Shariffudin, R.H. Parallel Implementation of 2-D Telegraphic Equation on MPI/PVM Cluster. Int J Parallel Prog 39, 202–231 (2011). https://doi.org/10.1007/s10766-010-0148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-010-0148-z

Keywords

Navigation