[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Optimizing Compiler for Parallel Chemistry Simulations

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Well designed domain specific languages have three important benefits: (1) the easy expression of problems, (2) the application of domain specific optimizations (including parallelization), and (3) dramatic improvements in productivity for their users. In this paper we describe a compiler and parallel runtime system for modeling the complex kinetics of rubber vulcanization and olefin polymerization that achieves all of these goals. The compiler allows the development of a system of ordinary differential equations describing a complex vulcanization reaction or single-site olefin polymerization reaction—a task that used to require months—to be done in hours. A specialized common sub-expression elimination and other algebraic optimizations sufficiently simplify the complex machine generated code to allow it to be compiled—eliminating all but 8.0% of the operations in our largest program and enabling over 60 times faster execution on our largest benchmark codes. The parallel runtime and dynamic load balancing scheme enables fast simulations of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, J., Goyal, A., Midkiff, S.P., Caruthers, J.M.: An optimizing compiler for parallel chemistry simulations. In: Proceedings of the 21th International Parallel and Distributed Processing Symposium (IPDPS 2007), 1–10 March 2007

  2. Gaussian ’03 web page. http://www.gaussian.com/g03.htm (2005). Accessed 13 Oct 2005

  3. gcc manual web page. http://gcc.gnu.org/onlinedocs/ (2008). Accessed 13 Feb 2008

  4. Ghosh P., Katare S., Patkar P., Caruthers J.M., Venkatasubramanian V., Walker K.A.: Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a rational kinetic model. Rubber Chem. Technol. 76(3), 592–693 (2003)

    Google Scholar 

  5. Goyal A., Cao J., Patkar P., Medvedev G., Midkiff S., Venkatasubramanian V., Caruthers J.: Population balance kinetic model for interaction of 2-bisbenzothiazole-2-2′ disulfide (MBTS) with sulfur. Rubber Chem. Technol. 81(4), 671–708 (2008)

    Google Scholar 

  6. GSL web page. http://www.gnu.org/software/gsl/manual (2007). Accessed 17 Oct 2007

  7. icc manual web page. http://www.intel.com/support/performancetools/c/linux/sb/cs-026076.htm (2008). Accessed 13 Feb 2008

  8. Katare S., Caruthers J.M., Delgass W.N., Venkatasubramanian V.: An intelligent system for reaction kinetic modeling and catalyst design. Ind. Eng. Chem. Res. 43(14), 3484–3512 (2004)

    Article  Google Scholar 

  9. Katare, S., Patkar, P., Ghosh, P., Caruthers, J.M., Delgass, W.N., Venkatasubramanian, V.: A systematic framework for rational materials formulation and design. In: Proceedings of the Symposium on Materials Design Approaches and Experiences, pp. 321–332. TMS (2001)

  10. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. Comput. (1), 322–350 (1977)

  11. Levenberg K.: A method for the solution of certain problems in least squares. Quart. Appl. Math. 2, 164–168 (1944)

    MATH  MathSciNet  Google Scholar 

  12. Marquardt D.: A algorithm for least squares estimation on nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  13. Novstrup, K.: Development of fundamental models of single-site olefin polymerization kinetics and the dependence upon catalyst structure. Ph.D. thesis, School of Chemical Engineering, Purdue University, 2010. In preparation

  14. Prickett S.E., Mavrovouniotis M.L.: Construction of complex reaction syatems-I. Reaction description language. Comput. Chem. Eng. 21(11), 1219–1235 (1997)

    Article  Google Scholar 

  15. Prickett S.E., Mavrovouniotis M.L.: Construction of complex reaction syatems-II. Molecule manipulation and reaction application algorithms. Comput. Chem. Eng. 21(11), 1237–1254 (1997)

    Article  Google Scholar 

  16. Prickett S.E., Mavrovouniotis M.L.: Construction of complex reaction syatems-II An example:alkylation of olefins. Comput. chem. Eng. 21(11), 1325–1337 (1997)

    Article  Google Scholar 

  17. Püschel M., Moura J.M.F., Singer B., Xiong J., Johnson J., Padua D., Veloso M., Johnson R.W.: Spiral: a generator for platform-adapted libraries of signal processing algorithms. Int. J. High Perform. Comput. Appl. 18(1), 21–45 (2004)

    Article  Google Scholar 

  18. Rosen, B.K.,Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant computations. In: POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages, pp. 12–27, ACM Press, New York, NY, USA (1988)

  19. Sorkin A.: Some comments on A solution to a problem with Morel and Renvoise’s ‘Global optimization by suppression of partial redundancies’. ACM Trans. Prog. Lang. Syst. 11(4), 666–668 (1989)

    Article  Google Scholar 

  20. Xiong, J., Johnson, J., Johnson, R., Padua, D.: SPL: a language and compiler for DSP algorithms. In: PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming Language Design and Implementation, pp. 298–308, ACM Press, New York, NY, USA (2001)

  21. xlc manual web page. http://www-306.ibm.com/software/awdtools/xlcpp/library. Accessed 13 Feb 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel P. Midkiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Goyal, A., Novstrup, K.A. et al. An Optimizing Compiler for Parallel Chemistry Simulations. Int J Parallel Prog 37, 127–152 (2009). https://doi.org/10.1007/s10766-008-0087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-008-0087-0

Keywords

Navigation