[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Arctiin Mitigates Neuronal Injury by Modulating the P2X7R/NLPR3 Inflammasome Signaling Pathway

  • CORRESPONDENCE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

ARC:

Arctiin

ASC:

Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain

CORT:

Corticosterone

CUMS:

Chronic unpredictable mild stress

DAPI:

4ʹ,6-Diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

IL-1β:

Interleukin-1β

LDH:

Lactate dehydrogenase

NLRP3:

NOD-like receptor family pyrin domain containing 3

PBS:

Phosphate-buffered saline

P2X7R:

P2X7 receptor

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor-alpha

TNFR1:

Tumor necrosis factor receptor 1

References

  1. McCarron, R. M., B. Shapiro, J. Rawles, and J. Luo. 2021. Depression. Annals of Internal Medicine 174 (5): ITC65–ITC80. https://doi.org/10.7326/AITC202105180.

    Article  PubMed  Google Scholar 

  2. Smith, K. 2014. Mental health: A world of depression. Nature 515 (7526): 181. https://doi.org/10.1038/515180a.

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organization. 2023. Depression. https://www.who.int/zh/news-room/fact-sheets/detail/depression. Accessed 11 Dec 2023.

  4. Hammen, C. 2018. Risk factors for depression: an autobiographical review. Annual Review of Clinical Psychology 14:1–28. https://doi.org/10.1146/annurev-clinpsy-050817-084811.

    Article  PubMed  Google Scholar 

  5. Li, X., T. Teng, W. Yan, L. Fan, X. Liu, G. Clarke, D. Zhu, Y. Jiang, Y. Xiang, Y. Yu, Y. Zhang, B. Yin, L. Lu, X. Zhou, and P. Xie. 2023. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Translational Psychiatry 13 (1): 200. https://doi.org/10.1038/s41398-023-02486-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu, W., T. Ge, Y. Leng, Z. Pan, J. Fan, W. Yang, and R. Cui. 2017. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plasticity 2017:6871089. https://doi.org/10.1155/2017/6871089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jiang, H., X. Long, Y. Wang, X. Zhang, L. Chen, X. Yang, B. Zhao, Y. Zhang, Y. Chai, and T. Bao. 2024. Acupuncture ameliorates depression-like behaviors through modulating the neuroinflammation mediated by TLR4 signaling pathway in rats exposed to chronic restraint stress. Molecular Neurobiology 61 (5): 2606–2619. https://doi.org/10.1007/s12035-023-03737-6.

    Article  PubMed  CAS  Google Scholar 

  8. Medina-Rodriguez, E. M., A. A. Cruz, J. C. De Abreu, and E. Beurel. 2023. Stress, inflammation, microbiome and depression. Pharmacology, Biochemistry, and Behavior 227–228:173561. https://doi.org/10.1016/j.pbb.2023.173561.

    Article  PubMed  CAS  Google Scholar 

  9. Mehdi, S., S. U. D. Wani, K. L. Krishna, N. Kinattingal, and T. F. Roohi. 2023. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochemistry and Biophysics Reports 36:101571. https://doi.org/10.1016/j.bbrep.2023.101571.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kim, Y. K., K. S. Na, A. M. Myint, and B. E. Leonard. 2016. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Progress in Neuro-psychopharmacology & Biological Psychiatry 64:277–284. https://doi.org/10.1016/j.pnpbp.2015.06.008.

    Article  CAS  Google Scholar 

  11. Tao, W., K. Su, Y. Huang, Z. Lu, Y. Wang, L. Yang, G. Zhang, and W. Liu. 2023. Zuojinwan ameliorates CUMS-induced depressive-like behavior through inducing ubiquitination of MyD88 via SPOP/MyD88/NF-κB pathway. Journal of Ethnopharmacology 312:116487. https://doi.org/10.1016/j.jep.2023.116487.

    Article  PubMed  CAS  Google Scholar 

  12. Andrejew, R., Á. Oliveira-Giacomelli, D. E. Ribeiro, T. Glaser, V. F. Arnaud-Sampaio, C. Lameu, and H. Ulrich. 2020. The P2X7 receptor: central hub of brain diseases. Frontiers in Molecular Neuroscience 13:124. https://doi.org/10.3389/fnmol.2020.00124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ribeiro, D. E., A. L. Roncalho, T. Glaser, H. Ulrich, G. Wegener, and S. Joca. 2019. P2X7 receptor signaling in stress and depression. International Journal of Molecular Sciences 20 (11): 2778. https://doi.org/10.3390/ijms20112778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pelegrin, P. 2021. P2X7 receptor and the NLRP3 inflammasome: Partners in crime. Biochemical Pharmacology 187:114385. https://doi.org/10.1016/j.bcp.2020.114385.

    Article  PubMed  CAS  Google Scholar 

  15. Song, L., L. Pei, S. Yao, Y. Wu, and Y. Shang. 2017. NLRP3 Inflammasome in neurological diseases, from functions to therapies. Frontiers in Cellular Neuroscience 11:63. https://doi.org/10.3389/fncel.2017.00063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. von Muecke-Heim, I. A., C. Ries, L. Urbina, and J. M. Deussing. 2021. P2X7R antagonists in chronic stress-based depression models: A review. European Archives of Psychiatry and Clinical Neuroscience 271 (7): 1343–1358. https://doi.org/10.1007/s00406-021-01306-3.

    Article  Google Scholar 

  17. Zhang, R., N. Li, M. Zhao, M. Tang, X. Jiang, X. Cai, N. Ye, K. Su, J. Peng, X. Zhang, W. Wu, and H. Ye. 2023. From lead to clinic: A review of the structural design of P2X7R antagonists. European Journal of Medicinal Chemistry 251:115234. https://doi.org/10.1016/j.ejmech.2023.115234.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, S., H. Ha, J. Jang, and Y. Byun. 2023. Recent advances in the development of antidepressants targeting the purinergic P2X7 receptor. Current Medicinal Chemistry 30 (2): 164–177. https://doi.org/10.2174/0929867329666220629141418.

    Article  PubMed  CAS  Google Scholar 

  19. Bonilla-Jaime, H., J. A. Sánchez-Salcedo, M. M. Estevez-Cabrera, T. Molina-Jiménez, J. L. Cortes-Altamirano, and A. Alfaro-Rodríguez. 2022. Depression and Pain: Use of Antidepressants. Current Neuropharmacology 20 (2): 384–402. https://doi.org/10.2174/1570159X19666210609161447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Joshi, A. 2018. Selective serotonin re-uptake inhibitors: an overview. Psychiatria Danubina 30 (Suppl 7): 605–609.

    PubMed  CAS  Google Scholar 

  21. Khawam, E. A., G. Laurencic, and D. A. Malone Jr. 2006. Side effects of antidepressants: an overview. Cleveland Clinic Journal of Medicine 73 (4): 351–361. https://doi.org/10.3949/ccjm.73.4.351.

    Article  PubMed  Google Scholar 

  22. Lin, R., L. Liu, M. Silva, J. Fang, Z. Zhou, H. Wang, J. Xu, T. Li, and W. Zheng. 2021. Hederagenin protects PC12 cells against corticosterone-induced injury by the activation of the PI3K/AKT pathway. Frontiers in Pharmacology 12:712876. https://doi.org/10.3389/fphar.2021.712876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Du, Y., W. Li, Y. Li, J. Yang, X. Wang, S. Yin, X. Wang, O. I. Velez de-la-Paz, Y. Gao, H. Chen, X. Yin, and H. Shi. 2019. Repeated arctigenin treatment produces antidepressant- and anxiolytic-like effects in mice. Brain Research Bulletin 146:79–86. https://doi.org/10.1016/j.brainresbull.2018.12.005.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou, B., G. Weng, Z. Huang, T. Liu, and F. Dai. 2018. Arctiin prevents LPS-induced acute lung injury via inhibition of PI3K/AKT signaling pathway in mice. Inflammation 41 (6): 2129–2135. https://doi.org/10.1007/s10753-018-0856-x.

    Article  PubMed  CAS  Google Scholar 

  25. Gao, Q., M. Yang, and Z. Zuo. 2018. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacologica Sinica 39 (5): 787–801. https://doi.org/10.1038/aps.2018.32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee, I. A., E. H. Joh, and D. H. Kim. 2011. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice. Planta Medica 77 (13): 1525–1527. https://doi.org/10.1055/s-0030-1270746.

    Article  PubMed  CAS  Google Scholar 

  27. Xu, X., X. Y. Zeng, Y. X. Cui, Y. B. Li, J. H. Cheng, X. D. Zhao, G. H. Xu, J. Ma, H. N. Piao, X. Jin, and L. X. Piao. 2020. Antidepressive effect of arctiin by attenuating neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-mediated NF-κB activation. ACS Chemical Neuroscience 11 (15): 2214–2230. https://doi.org/10.1021/acschemneuro.0c00120.

    Article  PubMed  CAS  Google Scholar 

  28. Li, J. M., T. Hu, C. L. Jiang, and W. Wang. 2022. Pinocembrin ameliorates depressive-like behaviors by regulating P2X7/TLR4 receptors expression in mouse hippocampus. Behavioural Pharmacology 33 (5): 301–308. https://doi.org/10.1097/FBP.0000000000000677.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, C., C. Cui, X. Xie, B. Chen, L. Feng, and P. Jiang. 2024. Calcitriol attenuates lipopolysaccharide-induced neuroinflammation and depressive-like behaviors by suppressing the P2X7R/NLRP3/caspase-1 pathway. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-024-06565-1. Advance online publication.

    Article  PubMed  Google Scholar 

  30. Litovchick, L. 2020. Stripping of the immunoblot for reprobing. Cold Spring Harbor Protocols 2020 (3): 098491. https://doi.org/10.1101/pdb.prot098491.

    Article  PubMed  Google Scholar 

  31. Trott, O., and A. J. Olson. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31 (2): 455–461. https://doi.org/10.1002/jcc.21334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sanner, M. F. 1999. Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling 17 (1): 57–61.

    CAS  Google Scholar 

  33. Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30 (16): 2785–2791. https://doi.org/10.1002/jcc.21256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yang, D., W. Wu, G. Gan, D. Wang, J. Gong, K. Fang, and F. Lu. 2020. (-)-Syringaresinol-4-O-β-D-glucopyranoside from Cortex Albizziae inhibits corticosterone-induced PC12 cell apoptosis and relieves the associated dysfunction. Food and Chemical Toxicology 141:111394. https://doi.org/10.1016/j.fct.2020.111394.

    Article  PubMed  CAS  Google Scholar 

  35. Lu, J. M., X. Xu, F. Aosai, M. Y. Zhang, L. L. Zhou, and L. X. Piao. 2024. Protective effect of arctiin against Toxoplasma gondii HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of cytosolic phospholipase A2 and platelet-activating factor. International Immunopharmacology 126:111254. https://doi.org/10.1016/j.intimp.2023.111254.

    Article  PubMed  CAS  Google Scholar 

  36. Komoltsev, I. G., and N. V. Gulyaeva. 2022. Brain trauma, glucocorticoids and neuroinflammation: dangerous liaisons for the hippocampus. Biomedicines 10 (5): 1139. https://doi.org/10.3390/biomedicines10051139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Stephenson, J., E. Nutma, P. van der Valk, and S. Amor. 2018. Inflammation in CNS neurodegenerative diseases. Immunology 154 (2): 204–219. https://doi.org/10.1111/imm.12922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wang, H., X. Zhou, J. Huang, N. Mu, Z. Guo, Q. Wen, R. Wang, S. Chen, Z. P. Feng, and W. Zheng. 2013. The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology (Berl) 228 (1): 129–141. https://doi.org/10.1007/s00213-013-3017-9.

    Article  PubMed  CAS  Google Scholar 

  39. Chai, Y., Y. Cai, Y. Fu, Y. Wang, Y. Zhang, X. Zhang, L. Zhu, M. Miao, and T. Yan. 2022. Salidroside ameliorates depression by suppressing NLRP3-Mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway. Frontiers in Pharmacology 13:812362. https://doi.org/10.3389/fphar.2022.812362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mao, Q. Q., Z. Huang, S. P. Ip, Y. F. Xian, and C. T. Che. 2012. Protective effects of piperine against corticosterone-induced neurotoxicity in PC12 cells. Cellular and Molecular Neurobiology 32 (4): 531–537. https://doi.org/10.1007/s10571-011-9786-y.

    Article  PubMed  CAS  Google Scholar 

  41. Zeng, B., Y. Li, B. Niu, X. Wang, Y. Cheng, Z. Zhou, T. You, Y. Liu, H. Wang, and J. Xu. 2016. Involvement of PI3K/Akt/FoxO3a and PKA/CREB signaling pathways in the protective effect of fluoxetine against corticosterone-induced cytotoxicity in PC12 cells. Journal of Molecular Neuroscience:MN 59 (4): 567–578. https://doi.org/10.1007/s12031-016-0779-7.

    Article  PubMed  CAS  Google Scholar 

  42. Gujral, S., H. Aizenstein, C. F. Reynolds 3rd., M. A. Butters, and K. I. Erickson. 2017. Exercise effects on depression: Possible neural mechanisms. General Hospital Psychiatry 49:2–10. https://doi.org/10.1016/j.genhosppsych.2017.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee, A. L., W. O. Ogle, and R. M. Sapolsky. 2002. Stress and depression: Possible links to neuron death in the hippocampus. Bipolar Disorders 4 (2): 117–128. https://doi.org/10.1034/j.1399-5618.2002.01144.x.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, H. K., P. V. Nunes, K. C. Oliveira, L. T. Young, and B. Lafer. 2016. Neuropathological relationship between major depression and dementia: A hypothetical model and review. Progress in Neuro-psychopharmacology & Biological Psychiatry 67:51–57. https://doi.org/10.1016/j.pnpbp.2016.01.008.

    Article  Google Scholar 

  45. O’Brien, J. T., A. Lloyd, I. McKeith, A. Gholkar, and N. Ferrier. 2004. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. The American Journal of Psychiatry 161 (11): 2081–2090. https://doi.org/10.1176/appi.ajp.161.11.2081.

    Article  PubMed  Google Scholar 

  46. Latt, H. M., H. Matsushita, M. Morino, Y. Koga, H. Michiue, T. Nishiki, K. Tomizawa, and H. Matsui. 2018. Oxytocin inhibits corticosterone-induced apoptosis in primary hippocampal neurons. Neuroscience 379:383–389. https://doi.org/10.1016/j.neuroscience.2018.03.025.

    Article  PubMed  CAS  Google Scholar 

  47. Tae, W. S., S. S. Kim, K. U. Lee, E. C. Nam, J. W. Choi, and J. I. Park. 2011. Hippocampal shape deformation in female patients with unremitting major depressive disorder. AJNR. American Journal of Neuroradiology 32 (4): 671–676. https://doi.org/10.3174/ajnr.A2367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Yang, L., Y. Huang, F. Chen, Y. Wang, K. Su, M. Zhao, W. Tao, and W. Liu. 2023. Berberine attenuates depression-like behavior by modulating the hippocampal NLRP3 ubiquitination signaling pathway through Trim65. International Immunopharmacology 123:110808. https://doi.org/10.1016/j.intimp.2023.110808.

    Article  PubMed  CAS  Google Scholar 

  49. Shen, J., P. Zhang, Y. Li, C. Fan, T. Lan, W. Wang, and S. Y. Yu. 2021. Neuroprotective effects of microRNA-211-5p on chronic stress-induced neuronal apoptosis and depression-like behaviours. Journal of Cellular and Molecular Medicine 25 (14): 7028–7038. https://doi.org/10.1111/jcmm.16716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Xu, D. H., J. K. Du, S. Y. Liu, H. Zhang, L. Yang, X. Y. Zhu, and Y. J. Liu. 2023. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death & Disease 14 (4): 278. https://doi.org/10.1038/s41419-023-05800-5.

    Article  CAS  Google Scholar 

  51. Lucassen, P. J., E. Fuchs, and B. Czéh. 2004. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biological Psychiatry 55 (8): 789–796. https://doi.org/10.1016/j.biopsych.2003.12.014.

    Article  PubMed  CAS  Google Scholar 

  52. Xu, L., J. Su, L. Guo, S. Wang, X. Deng, and S. Ma. 2019. Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: A target involved in depression. Neuropharmacology 155:150–161. https://doi.org/10.1016/j.neuropharm.2019.05.027.

    Article  PubMed  CAS  Google Scholar 

  53. Lan, H. W., Y. N. Lu, X. D. Zhao, G. N. Jin, J. M. Lu, C. H. Jin, J. Ma, X. Jin, X. Xu, and L. X. Piao. 2021. New role of sertraline against Toxoplasma gondii-induced depression-like behaviours in mice. Parasite Immunology 43 (12): e12893. https://doi.org/10.1111/pim.12893.

    Article  PubMed  CAS  Google Scholar 

  54. Gil, B., J. Smith, Y. Tang, P. Illes, and T. Engel. 2022. Beyond seizure control: treating comorbidities in epilepsy via targeting of the P2X7 receptor. International Journal of Molecular Sciences 23 (4): 2380. https://doi.org/10.3390/ijms23042380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Huang, Z., and S. Tan. 2021. P2X7 receptor as a potential target for major depressive disorder. Current Drug Targets 22 (10): 1108–1120. https://doi.org/10.2174/1389450122666210120141908.

    Article  PubMed  CAS  Google Scholar 

  56. Yue, N., H. Huang, X. Zhu, Q. Han, Y. Wang, B. Li, Q. Liu, G. Wu, Y. Zhang, and J. Yu. 2017. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. Journal of Neuroinflammation 14 (1): 102. https://doi.org/10.1186/s12974-017-0865-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Alcocer-Gómez, E., M. de Miguel, N. Casas-Barquero, J. Núñez-Vasco, J. A. Sánchez-Alcazar, A. Fernández-Rodríguez, and M. D. Cordero. 2014. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain, Behavior, and Immunity 36:111–117. https://doi.org/10.1016/j.bbi.2013.10.017.

    Article  PubMed  CAS  Google Scholar 

  58. Xia, C. Y., Y. X. Guo, W. W. Lian, Y. Yan, B. Z. Ma, Y. C. Cheng, J. K. Xu, J. He, and W. K. Zhang. 2023. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacological Research 187:106625. https://doi.org/10.1016/j.phrs.2022.106625.

    Article  PubMed  CAS  Google Scholar 

  59. Di Virgilio, F., D. Dal Ben, A. C. Sarti, A. L. Giuliani, and S. Falzoni. 2017. The P2X7 Receptor in infection and inflammation. Immunity 47 (1): 15–31. https://doi.org/10.1016/j.immuni.2017.06.020.

    Article  PubMed  CAS  Google Scholar 

  60. Wang, Y., Z. Shan, L. Zhang, S. Fan, Y. Zhou, L. Hu, Y. Wang, W. Li, and Z. Xiao. 2022. P2X7R/NLRP3 signaling pathway-mediated pyroptosis and neuroinflammation contributed to cognitive impairment in a mouse model of migraine. The Journal of Headache and Pain 23 (1): 75. https://doi.org/10.1186/s10194-022-01442-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sun, K., J. Zhang, Q. Yang, J. Zhu, X. Zhang, K. Wu, Z. Li, W. Xie, and X. Luo. 2021. Dexmedetomidine exerts a protective effect on ischemic brain injury by inhibiting the P2X7R/NLRP3/Caspase-1 signaling pathway. Brain Research Bulletin 174:11–21. https://doi.org/10.1016/j.brainresbull.2021.05.006.

    Article  PubMed  CAS  Google Scholar 

  62. Islam, J., J. A. Cho, J. Y. Kim, K. S. Park, Y. J. Koh, C. Y. Chung, E. J. Lee, S. J. Nam, K. Lee, S. H. Kim, S. H. Park, D. Y. Lee, B. C. Kim, K. H. Lee, and S. Y. Seong. 2022. GPCR19 regulates P2X7R-Mediated NLRP3 inflammasomal activation of microglia by amyloid β in a mouse model of alzheimer’s disease. Frontiers in Immunology 13:766919. https://doi.org/10.3389/fimmu.2022.766919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cheng, J. H., X. Xu, Y. B. Li, X. D. Zhao, F. Aosai, S. Y. Shi, C. H. Jin, J. S. Piao, J. Ma, H. N. Piao, X. J. Jin, and L. X. Piao. 2020. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. International Immunopharmacology 82:106302. https://doi.org/10.1016/j.intimp.2020.106302.

    Article  PubMed  CAS  Google Scholar 

  64. Xu, X., H. N. Piao, F. Aosai, X. Y. Zeng, J. H. Cheng, Y. X. Cui, J. Li, J. Ma, H. R. Piao, X. Jin, and L. X. Piao. 2020. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. British Journal of Pharmacology 177 (22): 5224–5245. https://doi.org/10.1111/bph.15261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Xu, X., Y. N. Lu, J. H. Cheng, H. W. Lan, J. M. Lu, G. N. Jin, G. H. Xu, C. H. Jin, J. Ma, H. N. Piao, X. Jin, and L. X. Piao. 2022. Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway. Journal of Ginseng Research 46 (1): 62–70. https://doi.org/10.1016/j.jgr.2021.04.003.

    Article  PubMed  Google Scholar 

  66. Lu, Y. N., J. M. Lu, G. N. Jin, X. Y. Shen, J. H. Wang, J. W. Ma, Y. Wang, Y. M. Liu, Y. Z. Quan, H. Y. Gao, X. Xu, and L. X. Piao. 2024. A novel mechanism of resveratrol alleviates Toxoplasma gondii infection-induced pulmonary inflammation via inhibiting inflammasome activation. Phytomedicine 131:155765. https://doi.org/10.1016/j.phymed.2024.155765.

    Article  PubMed  CAS  Google Scholar 

  67. Song, A. Q., B. Gao, J. J. Fan, Y. J. Zhu, J. Zhou, Y. L. Wang, L. Z. Xu, and W. N. Wu. 2020. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. Journal of Neuroinflammation 17 (1): 178. https://doi.org/10.1186/s12974-020-01848-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Glaser, T., R. Andrejew, Á. Oliveira-Giacomelli, D. E. Ribeiro, L. Bonfim Marques, Q. Ye, W. J. Ren, A. Semyanov, P. Illes, Y. Tang, and H. Ulrich. 2020. Purinergic receptors in basal ganglia diseases: shared molecular mechanisms between huntington’s and parkinson’s disease. Neuroscience Bulletin 36 (11): 1299–1314. https://doi.org/10.1007/s12264-020-00582-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Díaz-Hernández, M., M. Díez-Zaera, J. Sánchez-Nogueiro, R. Gómez-Villafuertes, J. M. Canals, J. Alberch, M. T. Miras-Portugal, and J. J. Lucas. 2009. Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB Journal 23 (6): 1893–1906. https://doi.org/10.1096/fj.08-122275.

    Article  PubMed  CAS  Google Scholar 

  70. Kong, H., H. Zhao, H. Chen, Y. Song, and Y. Cui. 2022. Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy. Cell Death & Disease 13 (4): 336. https://doi.org/10.1038/s41419-022-04786-w.

    Article  CAS  Google Scholar 

  71. Li, Z., Z. Huang, and L. Bai. 2021. The P2X7 Receptor in Osteoarthritis. Frontiers in Cell and Developmental Biology 9:628330. https://doi.org/10.3389/fcell.2021.628330.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ye, X., T. Shen, J. Hu, L. Zhang, Y. Zhang, L. Bao, C. Cui, G. Jin, K. Zan, Z. Zhang, X. Yang, H. Shi, J. Zu, M. Yu, C. Song, Y. Wang, S. Qi, and G. Cui. 2017. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Experimental Neurology 292:46–55. https://doi.org/10.1016/j.expneurol.2017.03.002.

    Article  PubMed  CAS  Google Scholar 

  73. Zhao, H., Y. Chen, and H. Feng. 2018. P2X7 Receptor-associated programmed cell death in the pathophysiology of hemorrhagic stroke. Current Neuropharmacology 16 (9): 1282–1295. https://doi.org/10.2174/1570159X16666180516094500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Fathinezhad, Z., R. D. E. Sewell, Z. Lorigooini, and M. Rafieian-Kopaei. 2019. Depression and treatment with effective herbs. Current Pharmaceutical Design 25 (6): 738–745. https://doi.org/10.2174/1381612825666190402105803.

    Article  PubMed  CAS  Google Scholar 

  75. Wang, H., Y. He, Z. Sun, S. Ren, M. Liu, G. Wang, and J. Yang. 2022. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. Journal of Neuroinflammation 19 (1): 132. https://doi.org/10.1186/s12974-022-02492-0.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (81960375), the Jilin Provincial Science and Technology Department (YDZJ202201ZYTS294), Yanbian University Doctoral Research Fund Project (ydbq202218) and the Application Foundation Project of Yanbian University (ydkj202225).

Author information

Authors and Affiliations

Authors

Contributions

GNJ contributed to investigation, data curation and writing—original draft. YW and YML contributed to investigation, data curation and writing. YNL, JML, JHW, JWM, YZQ and HYG contributed to investigation and data curation. YXC contributed to resources support. XX contributed to investigation, histopathology & formal analysis and writing—review & editing. LXP contributed to conceptualization, supervision, validation and writing—review & editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yue-Xian Cui, Xiang Xu or Lian-Xun Piao.

Ethics declarations

Ethics Approval and Consent to Participate

All animal experiments were carried out according to the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals (National Institutes of Health Publication No. 80–23, revised 1996) and approved by the Institutional Animal Care Committee of Yanbian University Medical School (resolution number: 201501022). All efforts were made to minimize suffering and the number of animals used during the studies.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, GN., Wang, Y., Liu, YM. et al. Arctiin Mitigates Neuronal Injury by Modulating the P2X7R/NLPR3 Inflammasome Signaling Pathway. Inflammation (2024). https://doi.org/10.1007/s10753-024-02117-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02117-z

KEY WORDS

Navigation