Abstract
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.
Data Availability
No datasets were generated or analysed during the current study.
Abbreviations
- ARC:
-
Arctiin
- ASC:
-
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain
- CORT:
-
Corticosterone
- CUMS:
-
Chronic unpredictable mild stress
- DAPI:
-
4ʹ,6-Diamidino-2-phenylindole
- DMSO:
-
Dimethyl sulfoxide
- ELISA:
-
Enzyme-linked immunosorbent assay
- IL-1β:
-
Interleukin-1β
- LDH:
-
Lactate dehydrogenase
- NLRP3:
-
NOD-like receptor family pyrin domain containing 3
- PBS:
-
Phosphate-buffered saline
- P2X7R:
-
P2X7 receptor
- TLR4:
-
Toll-like receptor 4
- TNF-α:
-
Tumor necrosis factor-alpha
- TNFR1:
-
Tumor necrosis factor receptor 1
References
McCarron, R. M., B. Shapiro, J. Rawles, and J. Luo. 2021. Depression. Annals of Internal Medicine 174 (5): ITC65–ITC80. https://doi.org/10.7326/AITC202105180.
Smith, K. 2014. Mental health: A world of depression. Nature 515 (7526): 181. https://doi.org/10.1038/515180a.
World Health Organization. 2023. Depression. https://www.who.int/zh/news-room/fact-sheets/detail/depression. Accessed 11 Dec 2023.
Hammen, C. 2018. Risk factors for depression: an autobiographical review. Annual Review of Clinical Psychology 14:1–28. https://doi.org/10.1146/annurev-clinpsy-050817-084811.
Li, X., T. Teng, W. Yan, L. Fan, X. Liu, G. Clarke, D. Zhu, Y. Jiang, Y. Xiang, Y. Yu, Y. Zhang, B. Yin, L. Lu, X. Zhou, and P. Xie. 2023. AKT and MAPK signaling pathways in hippocampus reveals the pathogenesis of depression in four stress-induced models. Translational Psychiatry 13 (1): 200. https://doi.org/10.1038/s41398-023-02486-3.
Liu, W., T. Ge, Y. Leng, Z. Pan, J. Fan, W. Yang, and R. Cui. 2017. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plasticity 2017:6871089. https://doi.org/10.1155/2017/6871089.
Jiang, H., X. Long, Y. Wang, X. Zhang, L. Chen, X. Yang, B. Zhao, Y. Zhang, Y. Chai, and T. Bao. 2024. Acupuncture ameliorates depression-like behaviors through modulating the neuroinflammation mediated by TLR4 signaling pathway in rats exposed to chronic restraint stress. Molecular Neurobiology 61 (5): 2606–2619. https://doi.org/10.1007/s12035-023-03737-6.
Medina-Rodriguez, E. M., A. A. Cruz, J. C. De Abreu, and E. Beurel. 2023. Stress, inflammation, microbiome and depression. Pharmacology, Biochemistry, and Behavior 227–228:173561. https://doi.org/10.1016/j.pbb.2023.173561.
Mehdi, S., S. U. D. Wani, K. L. Krishna, N. Kinattingal, and T. F. Roohi. 2023. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochemistry and Biophysics Reports 36:101571. https://doi.org/10.1016/j.bbrep.2023.101571.
Kim, Y. K., K. S. Na, A. M. Myint, and B. E. Leonard. 2016. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Progress in Neuro-psychopharmacology & Biological Psychiatry 64:277–284. https://doi.org/10.1016/j.pnpbp.2015.06.008.
Tao, W., K. Su, Y. Huang, Z. Lu, Y. Wang, L. Yang, G. Zhang, and W. Liu. 2023. Zuojinwan ameliorates CUMS-induced depressive-like behavior through inducing ubiquitination of MyD88 via SPOP/MyD88/NF-κB pathway. Journal of Ethnopharmacology 312:116487. https://doi.org/10.1016/j.jep.2023.116487.
Andrejew, R., Á. Oliveira-Giacomelli, D. E. Ribeiro, T. Glaser, V. F. Arnaud-Sampaio, C. Lameu, and H. Ulrich. 2020. The P2X7 receptor: central hub of brain diseases. Frontiers in Molecular Neuroscience 13:124. https://doi.org/10.3389/fnmol.2020.00124.
Ribeiro, D. E., A. L. Roncalho, T. Glaser, H. Ulrich, G. Wegener, and S. Joca. 2019. P2X7 receptor signaling in stress and depression. International Journal of Molecular Sciences 20 (11): 2778. https://doi.org/10.3390/ijms20112778.
Pelegrin, P. 2021. P2X7 receptor and the NLRP3 inflammasome: Partners in crime. Biochemical Pharmacology 187:114385. https://doi.org/10.1016/j.bcp.2020.114385.
Song, L., L. Pei, S. Yao, Y. Wu, and Y. Shang. 2017. NLRP3 Inflammasome in neurological diseases, from functions to therapies. Frontiers in Cellular Neuroscience 11:63. https://doi.org/10.3389/fncel.2017.00063.
von Muecke-Heim, I. A., C. Ries, L. Urbina, and J. M. Deussing. 2021. P2X7R antagonists in chronic stress-based depression models: A review. European Archives of Psychiatry and Clinical Neuroscience 271 (7): 1343–1358. https://doi.org/10.1007/s00406-021-01306-3.
Zhang, R., N. Li, M. Zhao, M. Tang, X. Jiang, X. Cai, N. Ye, K. Su, J. Peng, X. Zhang, W. Wu, and H. Ye. 2023. From lead to clinic: A review of the structural design of P2X7R antagonists. European Journal of Medicinal Chemistry 251:115234. https://doi.org/10.1016/j.ejmech.2023.115234.
Lee, S., H. Ha, J. Jang, and Y. Byun. 2023. Recent advances in the development of antidepressants targeting the purinergic P2X7 receptor. Current Medicinal Chemistry 30 (2): 164–177. https://doi.org/10.2174/0929867329666220629141418.
Bonilla-Jaime, H., J. A. Sánchez-Salcedo, M. M. Estevez-Cabrera, T. Molina-Jiménez, J. L. Cortes-Altamirano, and A. Alfaro-Rodríguez. 2022. Depression and Pain: Use of Antidepressants. Current Neuropharmacology 20 (2): 384–402. https://doi.org/10.2174/1570159X19666210609161447.
Joshi, A. 2018. Selective serotonin re-uptake inhibitors: an overview. Psychiatria Danubina 30 (Suppl 7): 605–609.
Khawam, E. A., G. Laurencic, and D. A. Malone Jr. 2006. Side effects of antidepressants: an overview. Cleveland Clinic Journal of Medicine 73 (4): 351–361. https://doi.org/10.3949/ccjm.73.4.351.
Lin, R., L. Liu, M. Silva, J. Fang, Z. Zhou, H. Wang, J. Xu, T. Li, and W. Zheng. 2021. Hederagenin protects PC12 cells against corticosterone-induced injury by the activation of the PI3K/AKT pathway. Frontiers in Pharmacology 12:712876. https://doi.org/10.3389/fphar.2021.712876.
Du, Y., W. Li, Y. Li, J. Yang, X. Wang, S. Yin, X. Wang, O. I. Velez de-la-Paz, Y. Gao, H. Chen, X. Yin, and H. Shi. 2019. Repeated arctigenin treatment produces antidepressant- and anxiolytic-like effects in mice. Brain Research Bulletin 146:79–86. https://doi.org/10.1016/j.brainresbull.2018.12.005.
Zhou, B., G. Weng, Z. Huang, T. Liu, and F. Dai. 2018. Arctiin prevents LPS-induced acute lung injury via inhibition of PI3K/AKT signaling pathway in mice. Inflammation 41 (6): 2129–2135. https://doi.org/10.1007/s10753-018-0856-x.
Gao, Q., M. Yang, and Z. Zuo. 2018. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacologica Sinica 39 (5): 787–801. https://doi.org/10.1038/aps.2018.32.
Lee, I. A., E. H. Joh, and D. H. Kim. 2011. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice. Planta Medica 77 (13): 1525–1527. https://doi.org/10.1055/s-0030-1270746.
Xu, X., X. Y. Zeng, Y. X. Cui, Y. B. Li, J. H. Cheng, X. D. Zhao, G. H. Xu, J. Ma, H. N. Piao, X. Jin, and L. X. Piao. 2020. Antidepressive effect of arctiin by attenuating neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-mediated NF-κB activation. ACS Chemical Neuroscience 11 (15): 2214–2230. https://doi.org/10.1021/acschemneuro.0c00120.
Li, J. M., T. Hu, C. L. Jiang, and W. Wang. 2022. Pinocembrin ameliorates depressive-like behaviors by regulating P2X7/TLR4 receptors expression in mouse hippocampus. Behavioural Pharmacology 33 (5): 301–308. https://doi.org/10.1097/FBP.0000000000000677.
Wang, C., C. Cui, X. Xie, B. Chen, L. Feng, and P. Jiang. 2024. Calcitriol attenuates lipopolysaccharide-induced neuroinflammation and depressive-like behaviors by suppressing the P2X7R/NLRP3/caspase-1 pathway. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-024-06565-1. Advance online publication.
Litovchick, L. 2020. Stripping of the immunoblot for reprobing. Cold Spring Harbor Protocols 2020 (3): 098491. https://doi.org/10.1101/pdb.prot098491.
Trott, O., and A. J. Olson. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31 (2): 455–461. https://doi.org/10.1002/jcc.21334.
Sanner, M. F. 1999. Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling 17 (1): 57–61.
Morris, G. M., R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30 (16): 2785–2791. https://doi.org/10.1002/jcc.21256.
Yang, D., W. Wu, G. Gan, D. Wang, J. Gong, K. Fang, and F. Lu. 2020. (-)-Syringaresinol-4-O-β-D-glucopyranoside from Cortex Albizziae inhibits corticosterone-induced PC12 cell apoptosis and relieves the associated dysfunction. Food and Chemical Toxicology 141:111394. https://doi.org/10.1016/j.fct.2020.111394.
Lu, J. M., X. Xu, F. Aosai, M. Y. Zhang, L. L. Zhou, and L. X. Piao. 2024. Protective effect of arctiin against Toxoplasma gondii HSP70-induced allergic acute liver injury by disrupting the TLR4-mediated activation of cytosolic phospholipase A2 and platelet-activating factor. International Immunopharmacology 126:111254. https://doi.org/10.1016/j.intimp.2023.111254.
Komoltsev, I. G., and N. V. Gulyaeva. 2022. Brain trauma, glucocorticoids and neuroinflammation: dangerous liaisons for the hippocampus. Biomedicines 10 (5): 1139. https://doi.org/10.3390/biomedicines10051139.
Stephenson, J., E. Nutma, P. van der Valk, and S. Amor. 2018. Inflammation in CNS neurodegenerative diseases. Immunology 154 (2): 204–219. https://doi.org/10.1111/imm.12922.
Wang, H., X. Zhou, J. Huang, N. Mu, Z. Guo, Q. Wen, R. Wang, S. Chen, Z. P. Feng, and W. Zheng. 2013. The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology (Berl) 228 (1): 129–141. https://doi.org/10.1007/s00213-013-3017-9.
Chai, Y., Y. Cai, Y. Fu, Y. Wang, Y. Zhang, X. Zhang, L. Zhu, M. Miao, and T. Yan. 2022. Salidroside ameliorates depression by suppressing NLRP3-Mediated pyroptosis via P2X7/NF-κB/NLRP3 signaling pathway. Frontiers in Pharmacology 13:812362. https://doi.org/10.3389/fphar.2022.812362.
Mao, Q. Q., Z. Huang, S. P. Ip, Y. F. Xian, and C. T. Che. 2012. Protective effects of piperine against corticosterone-induced neurotoxicity in PC12 cells. Cellular and Molecular Neurobiology 32 (4): 531–537. https://doi.org/10.1007/s10571-011-9786-y.
Zeng, B., Y. Li, B. Niu, X. Wang, Y. Cheng, Z. Zhou, T. You, Y. Liu, H. Wang, and J. Xu. 2016. Involvement of PI3K/Akt/FoxO3a and PKA/CREB signaling pathways in the protective effect of fluoxetine against corticosterone-induced cytotoxicity in PC12 cells. Journal of Molecular Neuroscience:MN 59 (4): 567–578. https://doi.org/10.1007/s12031-016-0779-7.
Gujral, S., H. Aizenstein, C. F. Reynolds 3rd., M. A. Butters, and K. I. Erickson. 2017. Exercise effects on depression: Possible neural mechanisms. General Hospital Psychiatry 49:2–10. https://doi.org/10.1016/j.genhosppsych.2017.04.012.
Lee, A. L., W. O. Ogle, and R. M. Sapolsky. 2002. Stress and depression: Possible links to neuron death in the hippocampus. Bipolar Disorders 4 (2): 117–128. https://doi.org/10.1034/j.1399-5618.2002.01144.x.
Kim, H. K., P. V. Nunes, K. C. Oliveira, L. T. Young, and B. Lafer. 2016. Neuropathological relationship between major depression and dementia: A hypothetical model and review. Progress in Neuro-psychopharmacology & Biological Psychiatry 67:51–57. https://doi.org/10.1016/j.pnpbp.2016.01.008.
O’Brien, J. T., A. Lloyd, I. McKeith, A. Gholkar, and N. Ferrier. 2004. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. The American Journal of Psychiatry 161 (11): 2081–2090. https://doi.org/10.1176/appi.ajp.161.11.2081.
Latt, H. M., H. Matsushita, M. Morino, Y. Koga, H. Michiue, T. Nishiki, K. Tomizawa, and H. Matsui. 2018. Oxytocin inhibits corticosterone-induced apoptosis in primary hippocampal neurons. Neuroscience 379:383–389. https://doi.org/10.1016/j.neuroscience.2018.03.025.
Tae, W. S., S. S. Kim, K. U. Lee, E. C. Nam, J. W. Choi, and J. I. Park. 2011. Hippocampal shape deformation in female patients with unremitting major depressive disorder. AJNR. American Journal of Neuroradiology 32 (4): 671–676. https://doi.org/10.3174/ajnr.A2367.
Yang, L., Y. Huang, F. Chen, Y. Wang, K. Su, M. Zhao, W. Tao, and W. Liu. 2023. Berberine attenuates depression-like behavior by modulating the hippocampal NLRP3 ubiquitination signaling pathway through Trim65. International Immunopharmacology 123:110808. https://doi.org/10.1016/j.intimp.2023.110808.
Shen, J., P. Zhang, Y. Li, C. Fan, T. Lan, W. Wang, and S. Y. Yu. 2021. Neuroprotective effects of microRNA-211-5p on chronic stress-induced neuronal apoptosis and depression-like behaviours. Journal of Cellular and Molecular Medicine 25 (14): 7028–7038. https://doi.org/10.1111/jcmm.16716.
Xu, D. H., J. K. Du, S. Y. Liu, H. Zhang, L. Yang, X. Y. Zhu, and Y. J. Liu. 2023. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death & Disease 14 (4): 278. https://doi.org/10.1038/s41419-023-05800-5.
Lucassen, P. J., E. Fuchs, and B. Czéh. 2004. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biological Psychiatry 55 (8): 789–796. https://doi.org/10.1016/j.biopsych.2003.12.014.
Xu, L., J. Su, L. Guo, S. Wang, X. Deng, and S. Ma. 2019. Modulation of LPA1 receptor-mediated neuronal apoptosis by Saikosaponin-d: A target involved in depression. Neuropharmacology 155:150–161. https://doi.org/10.1016/j.neuropharm.2019.05.027.
Lan, H. W., Y. N. Lu, X. D. Zhao, G. N. Jin, J. M. Lu, C. H. Jin, J. Ma, X. Jin, X. Xu, and L. X. Piao. 2021. New role of sertraline against Toxoplasma gondii-induced depression-like behaviours in mice. Parasite Immunology 43 (12): e12893. https://doi.org/10.1111/pim.12893.
Gil, B., J. Smith, Y. Tang, P. Illes, and T. Engel. 2022. Beyond seizure control: treating comorbidities in epilepsy via targeting of the P2X7 receptor. International Journal of Molecular Sciences 23 (4): 2380. https://doi.org/10.3390/ijms23042380.
Huang, Z., and S. Tan. 2021. P2X7 receptor as a potential target for major depressive disorder. Current Drug Targets 22 (10): 1108–1120. https://doi.org/10.2174/1389450122666210120141908.
Yue, N., H. Huang, X. Zhu, Q. Han, Y. Wang, B. Li, Q. Liu, G. Wu, Y. Zhang, and J. Yu. 2017. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. Journal of Neuroinflammation 14 (1): 102. https://doi.org/10.1186/s12974-017-0865-y.
Alcocer-Gómez, E., M. de Miguel, N. Casas-Barquero, J. Núñez-Vasco, J. A. Sánchez-Alcazar, A. Fernández-Rodríguez, and M. D. Cordero. 2014. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain, Behavior, and Immunity 36:111–117. https://doi.org/10.1016/j.bbi.2013.10.017.
Xia, C. Y., Y. X. Guo, W. W. Lian, Y. Yan, B. Z. Ma, Y. C. Cheng, J. K. Xu, J. He, and W. K. Zhang. 2023. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacological Research 187:106625. https://doi.org/10.1016/j.phrs.2022.106625.
Di Virgilio, F., D. Dal Ben, A. C. Sarti, A. L. Giuliani, and S. Falzoni. 2017. The P2X7 Receptor in infection and inflammation. Immunity 47 (1): 15–31. https://doi.org/10.1016/j.immuni.2017.06.020.
Wang, Y., Z. Shan, L. Zhang, S. Fan, Y. Zhou, L. Hu, Y. Wang, W. Li, and Z. Xiao. 2022. P2X7R/NLRP3 signaling pathway-mediated pyroptosis and neuroinflammation contributed to cognitive impairment in a mouse model of migraine. The Journal of Headache and Pain 23 (1): 75. https://doi.org/10.1186/s10194-022-01442-8.
Sun, K., J. Zhang, Q. Yang, J. Zhu, X. Zhang, K. Wu, Z. Li, W. Xie, and X. Luo. 2021. Dexmedetomidine exerts a protective effect on ischemic brain injury by inhibiting the P2X7R/NLRP3/Caspase-1 signaling pathway. Brain Research Bulletin 174:11–21. https://doi.org/10.1016/j.brainresbull.2021.05.006.
Islam, J., J. A. Cho, J. Y. Kim, K. S. Park, Y. J. Koh, C. Y. Chung, E. J. Lee, S. J. Nam, K. Lee, S. H. Kim, S. H. Park, D. Y. Lee, B. C. Kim, K. H. Lee, and S. Y. Seong. 2022. GPCR19 regulates P2X7R-Mediated NLRP3 inflammasomal activation of microglia by amyloid β in a mouse model of alzheimer’s disease. Frontiers in Immunology 13:766919. https://doi.org/10.3389/fimmu.2022.766919.
Cheng, J. H., X. Xu, Y. B. Li, X. D. Zhao, F. Aosai, S. Y. Shi, C. H. Jin, J. S. Piao, J. Ma, H. N. Piao, X. J. Jin, and L. X. Piao. 2020. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. International Immunopharmacology 82:106302. https://doi.org/10.1016/j.intimp.2020.106302.
Xu, X., H. N. Piao, F. Aosai, X. Y. Zeng, J. H. Cheng, Y. X. Cui, J. Li, J. Ma, H. R. Piao, X. Jin, and L. X. Piao. 2020. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. British Journal of Pharmacology 177 (22): 5224–5245. https://doi.org/10.1111/bph.15261.
Xu, X., Y. N. Lu, J. H. Cheng, H. W. Lan, J. M. Lu, G. N. Jin, G. H. Xu, C. H. Jin, J. Ma, H. N. Piao, X. Jin, and L. X. Piao. 2022. Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway. Journal of Ginseng Research 46 (1): 62–70. https://doi.org/10.1016/j.jgr.2021.04.003.
Lu, Y. N., J. M. Lu, G. N. Jin, X. Y. Shen, J. H. Wang, J. W. Ma, Y. Wang, Y. M. Liu, Y. Z. Quan, H. Y. Gao, X. Xu, and L. X. Piao. 2024. A novel mechanism of resveratrol alleviates Toxoplasma gondii infection-induced pulmonary inflammation via inhibiting inflammasome activation. Phytomedicine 131:155765. https://doi.org/10.1016/j.phymed.2024.155765.
Song, A. Q., B. Gao, J. J. Fan, Y. J. Zhu, J. Zhou, Y. L. Wang, L. Z. Xu, and W. N. Wu. 2020. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. Journal of Neuroinflammation 17 (1): 178. https://doi.org/10.1186/s12974-020-01848-8.
Glaser, T., R. Andrejew, Á. Oliveira-Giacomelli, D. E. Ribeiro, L. Bonfim Marques, Q. Ye, W. J. Ren, A. Semyanov, P. Illes, Y. Tang, and H. Ulrich. 2020. Purinergic receptors in basal ganglia diseases: shared molecular mechanisms between huntington’s and parkinson’s disease. Neuroscience Bulletin 36 (11): 1299–1314. https://doi.org/10.1007/s12264-020-00582-8.
Díaz-Hernández, M., M. Díez-Zaera, J. Sánchez-Nogueiro, R. Gómez-Villafuertes, J. M. Canals, J. Alberch, M. T. Miras-Portugal, and J. J. Lucas. 2009. Altered P2X7-receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB Journal 23 (6): 1893–1906. https://doi.org/10.1096/fj.08-122275.
Kong, H., H. Zhao, H. Chen, Y. Song, and Y. Cui. 2022. Targeted P2X7/NLRP3 signaling pathway against inflammation, apoptosis, and pyroptosis of retinal endothelial cells in diabetic retinopathy. Cell Death & Disease 13 (4): 336. https://doi.org/10.1038/s41419-022-04786-w.
Li, Z., Z. Huang, and L. Bai. 2021. The P2X7 Receptor in Osteoarthritis. Frontiers in Cell and Developmental Biology 9:628330. https://doi.org/10.3389/fcell.2021.628330.
Ye, X., T. Shen, J. Hu, L. Zhang, Y. Zhang, L. Bao, C. Cui, G. Jin, K. Zan, Z. Zhang, X. Yang, H. Shi, J. Zu, M. Yu, C. Song, Y. Wang, S. Qi, and G. Cui. 2017. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Experimental Neurology 292:46–55. https://doi.org/10.1016/j.expneurol.2017.03.002.
Zhao, H., Y. Chen, and H. Feng. 2018. P2X7 Receptor-associated programmed cell death in the pathophysiology of hemorrhagic stroke. Current Neuropharmacology 16 (9): 1282–1295. https://doi.org/10.2174/1570159X16666180516094500.
Fathinezhad, Z., R. D. E. Sewell, Z. Lorigooini, and M. Rafieian-Kopaei. 2019. Depression and treatment with effective herbs. Current Pharmaceutical Design 25 (6): 738–745. https://doi.org/10.2174/1381612825666190402105803.
Wang, H., Y. He, Z. Sun, S. Ren, M. Liu, G. Wang, and J. Yang. 2022. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. Journal of Neuroinflammation 19 (1): 132. https://doi.org/10.1186/s12974-022-02492-0.
Funding
This work was partially supported by the National Natural Science Foundation of China (81960375), the Jilin Provincial Science and Technology Department (YDZJ202201ZYTS294), Yanbian University Doctoral Research Fund Project (ydbq202218) and the Application Foundation Project of Yanbian University (ydkj202225).
Author information
Authors and Affiliations
Contributions
GNJ contributed to investigation, data curation and writing—original draft. YW and YML contributed to investigation, data curation and writing. YNL, JML, JHW, JWM, YZQ and HYG contributed to investigation and data curation. YXC contributed to resources support. XX contributed to investigation, histopathology & formal analysis and writing—review & editing. LXP contributed to conceptualization, supervision, validation and writing—review & editing. All authors read and approved the final manuscript.
Corresponding authors
Ethics declarations
Ethics Approval and Consent to Participate
All animal experiments were carried out according to the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals (National Institutes of Health Publication No. 80–23, revised 1996) and approved by the Institutional Animal Care Committee of Yanbian University Medical School (resolution number: 201501022). All efforts were made to minimize suffering and the number of animals used during the studies.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jin, GN., Wang, Y., Liu, YM. et al. Arctiin Mitigates Neuronal Injury by Modulating the P2X7R/NLPR3 Inflammasome Signaling Pathway. Inflammation (2024). https://doi.org/10.1007/s10753-024-02117-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10753-024-02117-z