Abstract
Acute myocarditis, also known as myocardial inflammation, is a self-limited condition caused by systemic infection with cardiotropic pathogens, primarily viruses, bacteria, or fungi. Despite significant research, inflammatory cardiomyopathy exacerbated by heart failure, arrhythmia, or left ventricular dysfunction and it has a dismal prognosis. In this study, we aimed to evaluate the therapeutic effect of yohimbine against lipopolysaccharide (LPS) induced myocarditis in rat model. The anti-inflammatory activity of yohimbine was assessed in in-vitro using RAW 264.7 and H9C2 cells. Myocarditis was induced in rats by injecting LPS (10 mg/kg), following the rats were treated with dexamethasone (2 mg/kg) or yohimbine (2.5, 5, and 10 mg/kg) for 12 h and their therapeutic activity was examined using various techniques. Yohimbine treatment significantly attenuated the LPS-mediated inflammatory markers expression in the in-vitro model. In-vivo studies proved that yohimbine treatment significantly reduced the LPS-induced increase of cardiac-specific markers, inflammatory cell counts, and pro-inflammatory markers expression compared to LPS-control samples. LPS administration considerably affected the ECG, RR, PR, QRS, QT, ST intervals, and hemodynamic parameters, and caused abnormal pathological parameters, in contrast, yohimbine treatment substantially improved the cardiac parameters, mitigated the apoptosis in myocardial cells and ameliorated the histopathological abnormalities that resulted in an improved survival rate. LPS-induced elevation of cardiac troponin-I, myeloperoxidase, CD-68, and neutrophil elastase levels were significantly attenuated upon yohimbine treatment. Further investigation showed that yohimbine exerts an anti-inflammatory effect partly by modulating the MAPK pathway. This study emphasizes yohimbine's therapeutic benefit against LPS-induced myocarditis and associated inflammatory markers response by regulating the MAPK pathway.
Similar content being viewed by others
Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Abbreviations
- ALT:
-
Alanine aminotransferase
- CK-MB:
-
Creatine kinase-myoglobin binding
- COX-2:
-
Cyclooxygenase-2
- cTnI:
-
Cardiac troponin 1
- CD-68:
-
Cluster of differentiation 68
- DMEM:
-
Dulbecco’s modified eagle medium
- DEX:
-
Dexamethasone
- ECG:
-
Electrocardiogram
- ELISA:
-
Enzyme-linked immunosorbent assay
- HR:
-
Heart rate
- h:
-
Hour
- i.p.:
-
Intra-peritoneal
- iNOS:
-
Inducible nitric oxide synthase
- KH:
-
Krebs henseleit
- LPS:
-
Lipopolysaccharide
- Ly6C:
-
Lymphocyte antigen 6 family member C
- LVDP:
-
Left ventricular developed pressure
- LDH:
-
Lactate dehydrogenase
- MPO:
-
Myeloperoxidase
- MAPK:
-
Mitogen-activated protein kinase
- MCP-1:
-
Monocyte chemoattractant protein-1
- NE:
-
Neutrophil elastase
- PBS:
-
Phosphate buffered saline
- RT-qPCR:
-
Reverse transcriptase quantitative PCR
- SRB:
-
Sulforhodamine-B
- SD:
-
Sprague Dawley
- YH:
-
Yohimbine hydrochloride
References
Tschöpe, C., E. Ammirati, B. Bozkurt, A.L.P. Caforio, L.T. Cooper, S.B. Felix, ..., and S. Van Linthout. 2021. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nature Reviews Cardiology 18 (3): 169–193. https://doi.org/10.1038/s41569-020-00435-x.
Salem, J.E., A. Manouchehri, M. Moey, B. Lebrun-Vignes, L. Bastarache, A. Pariente, ..., and J.J. Moslehi. 2018. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. The Lancet Oncology 19 (12): 1579–1589. https://doi.org/10.1016/s1470-2045(18)30608-9.
Liu, Z., S. Gao, Y. Bu, and X. Zheng. 2022. Luteolin Protects Cardiomyocytes Cells against Lipopolysaccharide-Induced Apoptosis and Inflammatory Damage by Modulating Nlrp3. Yonsei Medical Journal 63 (3): 220–228. https://doi.org/10.3349/ymj.2022.63.3.220.
Kang, M., V. Chippa, and J. An. 2023. Viral Myocarditis. In StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC.
Wang, X., X. Bu, L. Wei, J. Liu, D. Yang, D.L. Mann, ..., and T. Hayashi. 2021. Global, Regional, and National Burden of Myocarditis From 1990 to 2017: A Systematic Analysis Based on the Global Burden of Disease Study 2017. Frontiers in Cardiovascular Medicine 8: 692990. https://doi.org/10.3389/fcvm.2021.692990.
Ali, M., H.A. Shiwani, M.Y. Elfaki, M. Hamid, R. Pharithi, R. Kamgang, ..., and E.E.-A. Egom. 2022. COVID-19 and myocarditis: a review of literature. The Egyptian Heart Journal 74 (1): 23. https://doi.org/10.1186/s43044-022-00260-2.
Rose, N.R. 2011. Critical cytokine pathways to cardiac inflammation. Journal of Interferon and Cytokine Research 31 (10): 705–710. https://doi.org/10.1089/jir.2011.0057.
Caforio, A.L., S. Pankuweit, E. Arbustini, C. Basso, J. Gimeno-Blanes, S.B. Felix, ..., and P.M. Elliott. 2013. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal 34 (33): 2636–2648, 2648a–2648d. https://doi.org/10.1093/eurheartj/eht210.
Tschöpe, C., L.T. Cooper, G. Torre-Amione, and S.V. Linthout. 2019. Management of Myocarditis-Related Cardiomyopathy in Adults. Circulation Research 124 (11): 1568–1583. https://doi.org/10.1161/CIRCRESAHA.118.313578.
Ammirati, E., G. Veronese, M. Cipriani, F. Moroni, A. Garascia, M. Brambatti, ..., and M. Frigerio. 2018. Acute and Fulminant Myocarditis: a Pragmatic Clinical Approach to Diagnosis and Treatment. Current Cardiology Reports 20 (11): 114. https://doi.org/10.1007/s11886-018-1054-z.
Suresh, A., P. Martens, and W.H.W. Tang. 2022. Biomarkers for Myocarditis and Inflammatory Cardiomyopathy. Current Heart Failure Reports 19 (5): 346–355. https://doi.org/10.1007/s11897-022-00569-8.
Guerrero, N.A., M. Camacho, L. Vila, M.A. Íñiguez, C. Chillón-Marinas, H. Cuervo, ..., and N. Gironès. 2015. Cyclooxygenase-2 and Prostaglandin E2 Signaling through Prostaglandin Receptor EP-2 Favor the Development of Myocarditis during Acute Trypanosoma cruzi Infection. PLOS Neglected Tropical Diseases 9 (8): e0004025. https://doi.org/10.1371/journal.pntd.0004025.
Knuefermann, P., J. Vallejo, and D.L. Mann. 2004. The role of innate immune responses in the heart in health and disease. Trends in Cardiovascular Medicine 14 (1): 1–7. https://doi.org/10.1016/j.tcm.2003.09.003.
Dawson, J., W. Miltz, A.K. Mir, and C. Wiessner. 2003. Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opinion on Therapeutic Targets 7 (1): 35–48. https://doi.org/10.1517/14728222.7.1.35.
Fine, N., N. Tasevski, C.A. McCulloch, H.C. Tenenbaum, and M. Glogauer. 2020. The Neutrophil: Constant Defender and First Responder. Frontiers in Immunology 11: 571085. https://doi.org/10.3389/fimmu.2020.571085.
Rivadeneyra, L., N. Charó, D. Kviatcovsky, S. de la Barrera, R.M. Gómez, and M. Schattner. 2018. Role of neutrophils in CVB3 infection and viral myocarditis. Journal of Molecular and Cellular Cardiology 125: 149–161. https://doi.org/10.1016/j.yjmcc.2018.08.029.
Ammirati, E., M. Cipriani, C. Moro, C. Raineri, D. Pini, P. Sormani, ..., and P.G. Camici. 2018. Clinical Presentation and Outcome in a Contemporary Cohort of Patients With Acute Myocarditis: Multicenter Lombardy Registry. Circulation 138 (11): 1088–1099. https://doi.org/10.1161/circulationaha.118.035319.
Yang, H., M. Poznik, S. Tang, P. Xue, L. Du, C. Liu, ..., and J.J. Chruma. 2021. Synthesis of Conformationally Liberated Yohimbine Analogues and Evaluation of Cytotoxic Activity. ACS Omega 6 (29): 19291–19303. https://doi.org/10.1021/acsomega.1c02784.
Wibowo, D., D.M. Soebadi, and M.A. Soebadi. 2021. Yohimbine as a treatment for erectile dysfunction: A systematic review and meta-analysis. Turkish Journal of Urology 47 (6): 482–488. https://doi.org/10.5152/tud.2021.21206.
Ojatula, A., M. Idu, and O. Timothy. 2020. Aphrodisiac Potentials of <i>Pausinystalia yohimbe</i> (K. Schum.) Pierre ex Beille Methanol Root Extract in Male Wistar Rats. Journal of Integrative Nephrology and Andrology 7 (2): 47–55. https://doi.org/10.4103/jina.jina_7_20.
Lin, Y., X. Zhu, W.Z. Yao, Y.L. Yang, L.T. A, and L. Chen. 2011. Yohimbine protects against endotoxin-induced acute lung injury by blockade of alpha 2A adrenergic receptor in rats. Chinese Medical Journal (English) 124 (7): 1069–1074.
Miksa, M., P. Das, M. Zhou, R. Wu, W. Dong, Y. Ji, ..., and P. Wang. 2009. Pivotal role of the alpha(2A)-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS One 4 (5): e5504. https://doi.org/10.1371/journal.pone.0005504.
Zhang, Q., L.-Q. Hu, H.-Q. Li, J. Wu, N.-N. Bian, and G. Yan. 2019. Beneficial effects of andrographolide in a rat model of autoimmune myocarditis and its effects on PI3K/Akt pathway. The Korean Journal of Physiology & Pharmacology 23 (2): 103–111. https://doi.org/10.4196/kjpp.2019.23.2.103.
Sun, J., J. Sun, and X. Zhou. 2019. Protective functions of myricetin in LPS-induced cardiomyocytes H9c2 cells injury by regulation of MALAT1. European Journal of Medical Research 24 (1): 20. https://doi.org/10.1186/s40001-019-0378-5.
Tan, S., Z. Long, X. Hou, Y. Lin, J. Xu, X. You, ..., and Y. Zhang. 2019. H(2) Protects Against Lipopolysaccharide-Induced Cardiac Dysfunction via Blocking TLR4-Mediated Cytokines Expression. Frontiers in Pharmacology 10: 865. https://doi.org/10.3389/fphar.2019.00865.
Zhang, S., Y. Xu, J. Zhu, J. Ma, Q. Niu, and X. Wang. 2020. Carbon monoxide attenuates LPS-induced myocardial dysfunction in rats by regulating the mitochondrial dynamic equilibrium. European Journal of Pharmacology 889: 173726. https://doi.org/10.1016/j.ejphar.2020.173726.
Tirunavalli, S.K., M. Kuncha, R. Sistla, and S.B. Andugulapati. 2023. Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. Journal of Nutritional Biochemistry 116: 109294. https://doi.org/10.1016/j.jnutbio.2023.109294.
Shaikh, T.B., M. Kuncha, S.B. Andugulapati, and R. Sistla. 2023. Dehydrozingerone alleviates pulmonary fibrosis via inhibition of inflammation and epithelial-mesenchymal transition by regulating the Wnt/β-catenin pathway. European Journal of Pharmacology 953: 175820. https://doi.org/10.1016/j.ejphar.2023.175820.
Liu, G., J. Xie, Y. Shi, R. Chen, L. Li, M. Wang, ..., and J. Xu. 2020. Sec-O-glucosylhamaudol suppressed inflammatory reaction induced by LPS in RAW264.7 cells through inhibition of NF-κB and MAPKs signaling. Bioscience Reports 40 (2). https://doi.org/10.1042/bsr20194230.
Khodir, A.E., H.A. Ghoneim, M.A. Rahim, and G.M. Suddek. 2016. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats. Human and Experimental Toxicology 35 (4): 388–397. https://doi.org/10.1177/0960327115591372.
Konopelski, P., and M. Ufnal. 2016. Electrocardiography in rats: a comparison to human. Physiological Research 65 (5): 717–725. https://doi.org/10.33549/physiolres.933270.
Ravindran, S., J. Murali, S.K. Amirthalingam, S. Gopalakrishnan, and G.A. Kurian. 2017. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart. Vascular Pharmacology 89: 31–38. https://doi.org/10.1016/j.vph.2016.12.004.
Mahmoudabady, M., M. Lashkari, S. Niazmand, and M. Soukhtanloo. 2017. Cardioprotective effects of Achillea wilhelmsii on the isolated rat heart in ischemia-reperfusion. Journal of Traditional & Complementary Medicine 7 (4): 501–507. https://doi.org/10.1016/j.jtcme.2016.12.010.
Andugulapati, S.B., K. Gourishetti, S.K. Tirunavalli, T.B. Shaikh, and R. Sistla. 2020. Biochanin-A ameliorates pulmonary fibrosis by suppressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems. Phytomedicine 78: 153298. https://doi.org/10.1016/j.phymed.2020.153298.
Noda, S. 1980. Histopathology of endomyocardial biopsies from patients with idiopathic cardiomyopathy; quantitative evaluation based on multivariate statistical analysis. Japanese Circulation Journal 44 (2): 95–116. https://doi.org/10.1253/jcj.44.95.
Şener, G., H. Toklu, F. Ercan, and G. Erkanlı. 2005. Protective effect of β-glucan against oxidative organ injury in a rat model of sepsis. International Immunopharmacology 5 (9): 1387–1396. https://doi.org/10.1016/j.intimp.2005.03.007.
Kotipalli, R.S.S., S.K. Tirunavalli, A.B. Pote, B.D. Sahu, M. Kuncha, M.K. Jerald, ..., and S.B. Andugulapati. 2023. Sinigrin Attenuates the Dextran Sulfate Sodium-induced Colitis in Mice by Modulating the MAPK Pathway. Inflammation 46 (3): 787–807. https://doi.org/10.1007/s10753-022-01780-4.
Sharma, N., T.B. Shaikh, A. Eedara, M. Kuncha, R. Sistla, and S.B. Andugulapati. 2022. Dehydrozingerone ameliorates thioacetamide-induced liver fibrosis via inhibition of hepatic stellate cells activation through modulation of the MAPK pathway. European Journal of Pharmacology 937: 175366. https://doi.org/10.1016/j.ejphar.2022.175366.
De Luca, G., G. Cavalli, C. Campochiaro, M. Tresoldi, and L. Dagna. 2018. Myocarditis: An Interleukin-1-Mediated Disease? Frontiers in Immunology 9: 1335. https://doi.org/10.3389/fimmu.2018.01335.
Han, S., H. Gao, S. Chen, Q. Wang, X. Li, L.-J. Du, ..., and S. Yang. 2019. Procyanidin A1 Alleviates Inflammatory Response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 Pathways in RAW264.7 cells. Scientific Reports 9 (1): 15087. https://doi.org/10.1038/s41598-019-51614-x.
Tirunavalli, S.K., K. Gourishetti, R.S.S. Kotipalli, M. Kuncha, M. Kathirvel, R. Kaur, ..., and S.B. Andugulapati. 2021. Dehydrozingerone ameliorates Lipopolysaccharide induced acute respiratory distress syndrome by inhibiting cytokine storm, oxidative stress via modulating the MAPK/NF-κB pathway. Phytomedicine 92: 153729. https://doi.org/10.1016/j.phymed.2021.153729.
Hu, H., Y. Fu, M. Li, H. Xia, Y. Liu, X. Sun, ..., and Y. Wu. 2020. Interleukin-35 pretreatment attenuates lipopolysaccharide-induced heart injury by inhibition of inflammation, apoptosis and fibrotic reactions. International Immunopharmacology 86: 106725. https://doi.org/10.1016/j.intimp.2020.106725.
Punja, M., D.G. Mark, J.V. McCoy, R. Javan, J.M. Pines, and W. Brady. 2010. Electrocardiographic manifestations of cardiac infectious-inflammatory disorders. American Journal of Emergency Medicine 28 (3): 364–377. https://doi.org/10.1016/j.ajem.2008.12.017.
Hanna, A., and N.G. Frangogiannis. 2020. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovascular Drugs and Therapy 34 (6): 849–863. https://doi.org/10.1007/s10557-020-07071-0.
Tada, Y., and J. Suzuki. 2016. Oxidative stress and myocarditis. Current Pharmaceutical Design 22 (4): 450–471. https://doi.org/10.2174/1381612822666151222160559.
Nguyen, L.S., L.T. Cooper, M. Kerneis, C. Funck-Brentano, J. Silvain, N. Brechot, ..., and J.-E. Salem. 2022. Systematic analysis of drug-associated myocarditis reported in the World Health Organization pharmacovigilance database. Nature Communications 13 (1): 25. https://doi.org/10.1038/s41467-021-27631-8.
Alexopoulou, L., A.C. Holt, R. Medzhitov, and R.A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413 (6857): 732–738. https://doi.org/10.1038/35099560.
Francis, S.E., H. Holden, C.M. Holt, and G.W. Duff. 1998. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology 30 (2): 215–223. https://doi.org/10.1006/jmcc.1997.0592.
Baumgarten, G., P. Knuefermann, D. Kalra, F. Gao, G.E. Taffet, L. Michael, ..., and D.L. Mann. 2002. Load-Dependent and -Independent Regulation of Proinflammatory Cytokine and Cytokine Receptor Gene Expression in the Adult Mammalian Heart. Circulation 105 (18): 2192–2197. https://doi.org/10.1161/01.CIR.0000015608.37608.18.
Dewald, O., P. Zymek, K. Winkelmann, A. Koerting, G. Ren, T. Abou-Khamis, ..., and N.G. Frangogiannis. 2005. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circulation Research 96 (8): 881–889. https://doi.org/10.1161/01.RES.0000163017.13772.3a.
Eiken, H.G., E. Øie, J.K. Damås, A. Yndestad, V. Bjerkeli, H. Aass, ..., and P. Aukrust. 2001. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. European Journal of Clinical Investigation 31 (5): 389–397. https://doi.org/10.1046/j.1365-2362.2001.00795.x.
Fuse, K., M. Kodama, H. Hanawa, Y. Okura, M. Ito, T. Shiono, ..., and Y. Aizawa. 2001. Enhanced expression and production of monocyte chemoattractant protein-1 in myocarditis. Clinical and Experimental Immunology 124 (3): 346–352. https://doi.org/10.1046/j.1365-2249.2001.01510.x.
Huang, X., Z. Li, X. Shen, N. Nie, and Y. Shen. 2022. IL-17 upregulates MCP-1 expression via Act1 / TRAF6 / TAK1 in experimental autoimmune myocarditis. Cytokine 152: 155823. https://doi.org/10.1016/j.cyto.2022.155823.
Hartman, M.H.T., H.E. Groot, I.M. Leach, J.C. Karper, and P. van der Harst. 2018. Translational overview of cytokine inhibition in acute myocardial infarction and chronic heart failure. Trends in Cardiovascular Medicine 28 (6): 369–379. https://doi.org/10.1016/j.tcm.2018.02.003.
Niu, J., A. Azfer, and P.E. Kolattukudy. 2008. Protection against lipopolysaccharide-induced myocardial dysfunction in mice by cardiac-specific expression of soluble Fas. Journal of Molecular and Cellular Cardiology 44 (1): 160–169. https://doi.org/10.1016/j.yjmcc.2007.09.016.
He, H., X. Chang, J. Gao, L. Zhu, M. Miao, and T. Yan. 2015. Salidroside Mitigates Sepsis-Induced Myocarditis in Rats by Regulating IGF-1/PI3K/Akt/GSK-3β Signaling. Inflammation 38 (6): 2178–2184. https://doi.org/10.1007/s10753-015-0200-7.
Dogan, I., K. Karaman, B. Sonmez, S. Celik, and O. Turker. 2009. Relationship between serum neutrophil count and infarct size in patients with acute myocardial infarction. Nuclear Medicine Communications 30 (10): 797–801. https://doi.org/10.1097/MNM.0b013e32832e3a16.
Carbone, F., L.A. Crowe, A. Roth, F. Burger, S. Lenglet, V. Braunersreuther, ..., and F. Montecucco. 2016. Treatment with anti-RANKL antibody reduces infarct size and attenuates dysfunction impacting on neutrophil-mediated injury. Journal of Molecular and Cellular Cardiology 94: 82–94. https://doi.org/10.1016/j.yjmcc.2016.03.013.
Raadsen, M., J. Du Toit, T. Langerak, B. van Bussel, E. van Gorp, and M. Goeijenbier. 2021. Thrombocytopenia in Virus Infections. Journal of Clinical Medicine 10 (4): 877. https://doi.org/10.3390/jcm10040877.
Vincent, J.L., A. Yagushi, and O. Pradier. 2002. Platelet function in sepsis. Critical Care Medicine 30 (5 Suppl): S313-317. https://doi.org/10.1097/00003246-200205001-00022.
Shen, L., K. Lu, Z. Chen, Y. Zhu, C. Zhang, and L. Zhang. 2023. Pre-treatment with galectin-1 attenuates lipopolysaccharide-induced myocarditis by regulating the Nrf2 pathway. European Journal of Histochemistry 67 (4): 3816. https://doi.org/10.4081/ejh.2023.3816.
Buttà, C., L. Zappia, G. Laterra, and M. Roberto. 2020. Diagnostic and prognostic role of electrocardiogram in acute myocarditis: A comprehensive review. Annals of Noninvasive Electrocardiology 25 (3): e12726. https://doi.org/10.1111/anec.12726.
Porela, P., V. Kytö, K. Nikus, M. Eskola, and K.E. Airaksinen. 2012. PR depression is useful in the differential diagnosis of myopericarditis and ST elevation myocardial infarction. Annals of Noninvasive Electrocardiology 17 (2): 141–145. https://doi.org/10.1111/j.1542-474X.2012.00489.x.
Ginsberg, F., and J.E. Parrillo. 2013. Fulminant myocarditis. Critical Care Clinics 29 (3): 465–483. https://doi.org/10.1016/j.ccc.2013.03.004.
Dai, M.Y., Y.C. Yan, L.Y. Wang, C.X. Zhao, D.W. Wang, and J.G. Jiang. 2023. Characteristics of Electrocardiogram Findings in Fulminant Myocarditis. Journal of Cardiovascular Development and Disease 10 (7): 280. https://doi.org/10.3390/jcdd10070280.
Kheiry, M., M. Dianat, M. Badavi, S.A. Mard, and V. Bayati. 2019. p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress. Iranian Journal of Basic Medical Sciences 22 (8): 949–955. https://doi.org/10.22038/ijbms.2019.36316.8650.
Tsai, H.-J., C.-C. Shih, K.-Y. Chang, M.-H. Liao, W.-J. Liaw, C.-C. Wu, and C.-M. Tsao. 2021. Angiotensin-(1–7) treatment blocks lipopolysaccharide-induced organ damage, platelet dysfunction, and IL-6 and nitric oxide production in rats. Scientific Reports 11 (1): 610. https://doi.org/10.1038/s41598-020-79902-x.
Chakraborty, R.K., and B. Burns. 2023. Systemic Inflammatory Response Syndrome. In StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2023, StatPearls Publishing LLC.
Nymo, S.H., J. Hulthe, T. Ueland, J. McMurray, J. Wikstrand, E.T. Askevold, ..., P. Aukrust. 2014. Inflammatory cytokines in chronic heart failure: interleukin-8 is associated with adverse outcome. Results from CORONA. European Journal of Heart Failure 16 (1): 68–75. https://doi.org/10.1093/eurjhf/hft125.
Husebye, T., J. Eritsland, H. Arnesen, R. Bjørnerheim, A. Mangschau, I. Seljeflot, and G. Andersen. 2014. Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure. PLoS ONE 9 (11): e112359. https://doi.org/10.1371/journal.pone.0112359.
Chou, W.Y., K.H. Chuang, D. Sun, Y.H. Lee, P.H. Kao, Y.Y. Lin, ..., and Y.L. Wu. 2015. Inhibition of PKC-Induced COX-2 and IL-8 Expression in Human Breast Cancer Cells by Glucosamine. Journal of Cellular Physiology 230 (9): 2240–2251. https://doi.org/10.1002/jcp.24955.
Neha, M.M. Ansari, and H.A. Khan. 2017. Yohimbine hydrochloride ameliorates collagen type-II-induced arthritis targeting oxidative stress and inflammatory cytokines in Wistar rats. Environmental Toxicology 32 (2): 619–629. https://doi.org/10.1002/tox.22264.
Zhang, N., X. Aiyasiding, W.J. Li, H.H. Liao, and Q.Z. Tang. 2022. Neutrophil degranulation and myocardial infarction. Cell Communication and Signaling: CCS 20 (1): 50. https://doi.org/10.1186/s12964-022-00824-4.
Yu, X., R.H. Kennedy, and S.J. Liu. 2003. JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. Journal of Biological Chemistry 278 (18): 16304–16309. https://doi.org/10.1074/jbc.M212321200.
Ogura, Y., K. Tajiri, N. Murakoshi, D. Xu, S. Yonebayashi, S. Li, ..., and M. Ieda. 2021. Neutrophil Elastase Deficiency Ameliorates Myocardial Injury Post Myocardial Infarction in Mice. International Journal of Molecular Sciences 22 (2). https://doi.org/10.3390/ijms22020722.
Sharma, N., R. Sistla, and S.B. Andugulapati. 2023. Yohimbine ameliorates liver inflammation and fibrosis by regulating oxidative stress and Wnt/β-catenin pathway. Phytomedicine 123: 155182. https://doi.org/10.1016/j.phymed.2023.155182.
Wang, Y., X. Yu, F. Wang, Y. Wang, Y. Wang, H. Li, ..., and H. Wang. 2013. Yohimbine promotes cardiac NE release and prevents LPS-induced cardiac dysfunction via blockade of presynaptic α2A-adrenergic receptor. PLoS One 8 (5): e63622. https://doi.org/10.1371/journal.pone.0063622.
Newby, L.K., M.S. Marber, C. Melloni, L. Sarov-Blat, L.H. Aberle, P.E. Aylward, ..., and S. Investigators. 2014. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 384 (9949): 1187–1195. https://doi.org/10.1016/S0140-6736(14)60417-7.
Shi, Y., C. Chen, U. Lisewski, U. Wrackmeyer, M. Radke, D. Westermann, ..., and M. Gotthardt. 2009. Cardiac Deletion of the Coxsackievirus-Adenovirus Receptor Abolishes Coxsackievirus B3 Infection and Prevents Myocarditis In Vivo. Journal of the American College of Cardiology 53 (14): 1219–1226. https://doi.org/10.1016/j.jacc.2008.10.064.
Wang, M., R. Sankula, B.M. Tsai, K.K. Meldrum, M. Turrentine, K.L. March, ..., and D.R. Meldrum. 2004. P38 MAPK Mediates Myocardial Proinflammatory Cytokine Production and Endotoxin-Induced Contractile Suppression. Shock 21 (2): 170–174. https://doi.org/10.1097/01.shk.0000110623.20647.aa.
Acknowledgements
Authors thank the Director, CSIR-IICT, Hyderabad, India, for providing the facilities and funding necessary for the conducting of this work. CSIR-IICT manuscript communication number: IICT/Pubs./2023/204. A. V acknowledges DST-Inspire (IF190483) for providing a fellowship. T.B.S and R.K acknowledge the Council of Scientific and Industrial Research, New Delhi for providing SRF. We acknowledge Prof. Gino A Kurian from the Department of Biotechnology, Sastra Deemed University for providing training on the Langendorff apparatus. The authors also acknowledge Dr C Yogesh (CSIR-IICT) for assistance in histological observations.
Funding
Used internal funds of the institute. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Authors and Affiliations
Contributions
Conceptualization: S.B.A, S. R. K; Methodology: A. V, S.B.A, S. R. K.; In vitro cell culture: A. V; RT-qPCR, Western-blot analysis, A.V R.K; In vivo and ex-vivo experiments: A.V, T.B.S, A.E; Manuscript 1st draft writing: A.V, Manuscript writing - review & editing: S.B.A and S. R. K.; funding acquisition: S.R. K and S.B.A.
Corresponding authors
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Veeram, A., Shaikh, T.B., Kaur, R. et al. Yohimbine Treatment Alleviates Cardiac Inflammation/Injury and Improves Cardiac Hemodynamics by Modulating Pro-Inflammatory and Oxidative Stress Indicators. Inflammation 47, 1423–1443 (2024). https://doi.org/10.1007/s10753-024-01985-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10753-024-01985-9