[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Anti-Necroptotic Effects of Itaconate and its Derivatives

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Itaconate is an unsaturated dicarboxylic acid that is derived from the decarboxylation of the Krebs cycle intermediate cis-aconitate and has been shown to exhibit anti-inflammatory and anti-bacterial/viral properties. But the mechanisms underlying itaconate’s anti-inflammatory activities are not fully understood. Necroptosis, a lytic form of regulated cell death (RCD), is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) signaling. It has been involved in the pathogenesis of organ injury in many inflammatory diseases. In this study, we aimed to explore whether itaconate and its derivatives can inhibit necroptosis in murine macrophages, a mouse MPC-5 cell line and a human HT-29 cell line in response to different necroptotic activators. Our results showed that itaconate and its derivatives dose-dependently inhibited necroptosis, among which dimethyl itaconate (DMI) was the most effective one. Mechanistically, itaconate and its derivatives inhibited necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling and the oligomerization of MLKL. Furthermore, DMI promoted the nuclear translocation of Nrf2 that is a critical regulator of intracellular redox homeostasis, and reduced the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide (mtROS) that were induced by necroptotic activators. Consistently, DMI prevented the loss of mitochondrial membrane potential induced by the necroptotic activators. In addition, DMI mitigated caerulein-induced acute pancreatitis in mice accompanied by reduced activation of the necroptotic signaling in vivo. Collectively, our study demonstrates that itaconate and its derivatives can inhibit necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling, highlighting their potential applications for treating necroptosis-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Michelucci, A., T. Cordes, J. Ghelfi, et al. 2013. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production [J]. Proceedings of the National Academy of Sciences of the United States of America 110 (19): 7820–7825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, P., Y. Wang, W. Yang, et al. 2022. 4-octyl itaconate regulates immune balance by activating Nrf2 and negatively regulating PD-L1 in a mouse model of sepsis [J]. International journal of biological sciences 18 (16): 6189–6209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bambouskova, M., L. Gorvel, V. Lampropoulou, et al. 2018. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis [J]. Nature 556 (7702): 501–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ogger P.P, G.J. Albers, R.J. Hewitt, et al. 2020. Itaconate controls the severity of pulmonary fibrosis [J]. Science Immunology 5 (52).

  5. Olagnier, D., E. Farahani, J. Thyrsted, et al. 2020. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate [J]. Nature communications 11 (1): 4938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yi, Z., M. Deng, M.J. Scott, et al. 2020. Immune-responsive gene 1/Itaconate activates nuclear factor erythroid 2-related factor 2 in hepatocytes to protect against liver ischemia-reperfusion injury [J]. Hepatology (Baltimore, MD) 72 (4): 1394–1411.

    Article  CAS  PubMed  Google Scholar 

  7. Song, H., T. Xu, X. Feng, et al. 2020. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2 [J]. eBioMedicine 57: 102832.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tang, C., X. Wang, Y. Xie, et al. 2018. 4-octyl itaconate activates Nrf2 signaling to inhibit pro-inflammatory cytokine production in peripheral blood mononuclear cells of systemic lupus erythematosus patients [J]. Cellular physiology and biochemistry : International journal of experimental cellular physiology, biochemistry, and pharmacology 51 (2): 979–990.

    Article  CAS  PubMed  Google Scholar 

  9. Hooftman, A., S. Angiari, S. Hester, et al. 2020. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation [J]. Cell metabolism 32 (3): 468–78.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Y., L. Song, N. Zheng, et al. 2022. A urinary proteomic landscape of COVID-19 progression identifies signaling pathways and therapeutic options [J]. Science China Life sciences 65 (9): 1866–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xie, Y., Z. Chen, and Z. Wu. 2022. Four-octyl itaconate attenuates UVB-induced melanocytes and keratinocytes apoptosis by Nrf2 activation-dependent ROS inhibition [J]. Oxidative medicine and cellular longevity 2022: 9897442.

    Article  PubMed  PubMed Central  Google Scholar 

  12. He, R., B. Liu, R. Xiong, et al. 2022. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury [J]. Cell death discovery 8 (1): 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shan, Q., X. Li, M. Zheng, et al. 2019. Protective effects of dimethyl itaconate in mice acute cardiotoxicity induced by doxorubicin [J]. Biochemical and biophysical research communications 517 (3): 538–544.

    Article  CAS  PubMed  Google Scholar 

  14. Jiao, H., L. Wachsmuth, S. Kumari, et al. 2020. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation [J]. Nature 580 (7803): 391–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Degterev, A., Z. Huang, M. Boyce, et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury [J]. Nature chemical biology 1 (2): 112–119.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, X., W. Li, J. Ren, et al. 2014. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death [J]. Cell Research 24 (1): 105–121.

    Article  CAS  PubMed  Google Scholar 

  17. Sun, L., H. Wang, Z. Wang, et al. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase [J]. Cell 148 (1–2): 213–227.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, J., S. Jitkaew, Z. Cai, et al. 2012. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis [J]. Proceedings of the National Academy of Sciences of the United States of America 109 (14): 5322–5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vandenabeele, P., L. Galluzzi, T. Vanden Berghe, et al. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion [J]. Nature reviews Molecular cell biology 11 (10): 700–714.

    Article  CAS  PubMed  Google Scholar 

  20. Tenev, T., K. Bianchi, M. Darding, et al. 2011. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs [J]. Molecular cell 43 (3): 432–448.

    Article  CAS  PubMed  Google Scholar 

  21. Mccomb, S., B. Shutinoski, S. Thurston, et al. 2014. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase [J]. Journal of immunology (Baltimore, Md : 1950) 192 (12): 5671–8.

  22. Degterev, A., J. Hitomi, M. Germscheid, et al. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins [J]. Nature Chemical Biology 4 (5): 313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, D., J. Chen, J. Guo, et al. 2021. A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin(2α)-induced corpus luteum regression [J]. eLife 10.

  24. Murphy, J.M., P.E. Czabotar, J.M. Hildebrand, et al. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism [J]. Immunity 39 (3): 443–453.

    Article  CAS  PubMed  Google Scholar 

  25. Dondelinger, Y., W. Declercq, S. Montessuit, et al. 2014. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates [J]. Cell reports 7 (4): 971–981.

    Article  CAS  PubMed  Google Scholar 

  26. Quarato, G., C.S. Guy, C.R. Grace, et al. 2016. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis [J]. Molecular cell 61 (4): 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karki, R., B.R. Sharma, S. Tuladhar, et al. 2021. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes [J]. Cell 184 (1): 149–68.e17.

    Article  CAS  PubMed  Google Scholar 

  28. Yu, Z., N. Jiang, W. Su, et al. 2021. Necroptosis: a novel pathway in neuroinflammation [J]. Frontiers in pharmacology 12: 701564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao, L., and W. Mu. 2021. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications [J]. Pharmacological research 163: 105297.

    Article  CAS  PubMed  Google Scholar 

  30. Cuchet-Lourenço, D., D. Eletto, C. Wu, et al. 2018. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation [J]. Science (New York, NY) 361 (6404): 810–813.

    Article  Google Scholar 

  31. Shi, F.L., L.S. Yuan, T.S. Wong, et al. 2023. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1-RIPK3-MLKL axis [J]. Pharmacological research 189: 106697.

    Article  CAS  PubMed  Google Scholar 

  32. Huang, Y.T., Q.Q. Liang, H.R. Zhang, et al. 2022. Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice [J]. International Immunopharmacology 108: 108885.

    Article  CAS  PubMed  Google Scholar 

  33. Shi, F.L., S.T. Ni, S.Q. Luo, et al. 2022. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation [J]. International Immunopharmacology 108: 108867.

    Article  CAS  PubMed  Google Scholar 

  34. Li, C.G., Q.Z. Zeng, M.Y. Chen, et al. 2019. Evodiamine augments NLRP3 inflammasome activation and anti-bacterial responses through inducing α-tubulin acetylation [J]. Frontiers in pharmacology 10: 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng, B., Y. Huang, S. Chen, et al. 2022. Dextran sodium sulfate potentiates NLRP3 inflammasome activation by modulating the KCa3.1 potassium channel in a mouse model of colitis [J]. Cellular & Molecular Immunology 19 (8): 925–43.

  36. Wu, J., Z. Huang, J. Ren, et al. 2013. Mlkl knockout mice demonstrate the indispensable role of mlkl in necroptosis [J]. Cell Research 23 (8): 994–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han, Y.Y., X. Gu, C.Y. Yang, et al. 2021. Protective effect of dimethyl itaconate against fibroblast-myofibroblast differentiation during pulmonary fibrosis by inhibiting TXNIP [J]. Journal of cellular physiology 236 (11): 7734–7744.

    Article  CAS  PubMed  Google Scholar 

  38. Bertheloot, D., E. Latz, and B.S. Franklin. 2021. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death [J]. Cellular & molecular immunology 18 (5): 1106–1121.

    Article  CAS  Google Scholar 

  39. Baird, L., and M. Yamamoto, 2020. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway [J]. Molecular and Cellular Biology 40 (13).

  40. Louhimo, J., M.L. Steer, and G. Perides. 2016. Necroptosis is an important severity determinant and potential therapeutic target in experimental severe pancreatitis [J]. Cellular and molecular gastroenterology and hepatology 2 (4): 519–535.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, M., Y. Yuan, X. Han, et al. 2022. Antioxidant mitoquinone alleviates chronic pancreatitis via anti-fibrotic and antioxidant effects [J]. Journal of inflammation research 15: 4409–4420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marciniak, A., B. Walczyna, G. Rajtar, et al. 2016. Tempol, a membrane-permeable radical scavenger, exhibits anti-inflammatory and cardioprotective effects in the cerulein-induced pancreatitis rat model [J]. Oxidative medicine and cellular longevity 2016: 4139851.

    Article  PubMed  Google Scholar 

  43. Yu, J.H., J.W. Lim, W. Namkung, et al. 2002. Suppression of cerulein-induced cytokine expression by antioxidants in pancreatic acinar cells [J]. Laboratory Investigation: A Journal of Technical Methods and Pathology 82 (10): 1359–68.

  44. Shi, J., and C. Cai. 2022. Research Progress on the mechanism of itaconate regulating macrophage immunometabolism [J]. Frontiers in immunology 13: 937247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peace, C.G., and L.A. O'neill. 2022. The role of itaconate in host defense and inflammation [J]. The Journal of Clinical Investigation 132 (2).

  46. Hooftman, A., and L.A.J. O'Neill. 2019. The Immunomodulatory Potential of the Metabolite Itaconate [J]. Trends in Immunology 40 (8): 687–98.

  47. Swain, A., M. Bambouskova, H. Kim, et al. 2020. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages [J]. Nature metabolism 2 (7): 594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mills, E.L., D.G. Ryan, H.A. Prag, et al. 2018. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 [J]. Nature 556 (7699): 113–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ryan, D.G, E.V. Knatko, A.M. Casey, et al. 2022. Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response [J]. iScience 25 (2): 103827.

  50. Waqas, S.F., A. Sohail, A.H.H. Nguyen, et al. 2022. ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives [J]. Clinical and translational medicine 12 (7): e931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liao, S.T., C. Han, D.Q. Xu, et al. 2019. 4-octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects [J]. Nature communications 10 (1): 5091.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Qin, W., K. Qin, Y. Zhang, et al. 2019. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate [J]. Nature Chemical Biology 15 (10): 983–991.

    Article  CAS  PubMed  Google Scholar 

  53. Qin, W., Y. Zhang, H. Tang, et al. 2020. Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages [J]. Journal of the American Chemical Society 142 (25): 10894–10898.

    Article  CAS  PubMed  Google Scholar 

  54. Bambouskova, M., L. Potuckova, T. Paulenda, et al. 2021. Itaconate confers tolerance to late NLRP3 inflammasome activation [J]. Cell reports 34 (10): 108756.

    Article  CAS  PubMed  Google Scholar 

  55. Yang, W., Y. Wang, Y. Huang, et al. 2023. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer [J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 159 : 114301.

  56. Van Herreweghe, F., N. Festjens, W. Declercq, et al. 2010. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question [J]. Cellular and Molecular Life Sciences 67 (10): 1567–1579.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Y., S.S. Su, S. Zhao, et al. 2017. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome [J]. Nature communications 8: 14329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, Z., Y. Wang, Y. Zhang, et al. 2018. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis [J]. Nature cell biology 20 (2): 186–197.

    Article  CAS  PubMed  Google Scholar 

  59. Qiu, X., Y. Zhang, and J. Han. 2018. RIP3 is an upregulator of aerobic metabolism and the enhanced respiration by necrosomal RIP3 feeds back on necrosome to promote necroptosis [J]. Cell death and differentiation 25 (5): 821–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sohail, A., A.A. Iqbal, N. Sahini, et al. 2022. Itaconate and derivatives reduce interferon responses and inflammation in influenza a virus infection [J]. PLoS pathogens 18 (1): e1010219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, Y., S. Choksi, H.M. Shen, et al. 2004. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation [J]. The Journal of biological chemistry 279 (11): 10822–10828.

    Article  CAS  PubMed  Google Scholar 

  62. Kamata, H., S. Honda, S. Maeda, et al. 2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases [J]. Cell 120 (5): 649–661.

    Article  CAS  PubMed  Google Scholar 

  63. Lampropoulou, V., A. Sergushichev, M. Bambouskova, et al. 2016. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation [J]. Cell metabolism 24 (1): 158–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cordes, T., M. Wallace, A. Michelucci, et al. 2016. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels [J]. The Journal of biological chemistry 291 (27): 14274–14284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, S., and A.H. Millar. 2013. Succinate dehydrogenase: the complex roles of a simple enzyme [J]. Current opinion in plant biology 16 (3): 344–349.

    Article  CAS  PubMed  Google Scholar 

  66. Billingham, L.K., J.S. Stoolman, K. Vasan, et al. 2022. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation [J]. Nature immunology 23 (5): 692–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y.P., A. Sharda, S.N. Xu, et al. 2021. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis [J]. Cell metabolism 33 (5): 1027–41.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hooftman, A., C.G. Peace, D.G. Ryan, et al. 2023. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production [J]. Nature 615 (7952): 490–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Spinelli, J.B., P.C. Rosen, H.G. Sprenger, et al. 2021. Fumarate is a terminal electron acceptor in the mammalian electron transport chain [J]. Science (New York, NY) 374 (6572): 1227–1237.

    Article  CAS  Google Scholar 

  70. Leppäniemi, A., M. Tolonen, A. Tarasconi, et al. 2019. 2019 WSES guidelines for the management of severe acute pancreatitis [J]. World journal of emergency surgery : WJES 14: 27.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kuo, P.C., W.T. Weng, B.A. Scofield, et al. 2020. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis [J]. Journal of neuroinflammation 17 (1): 138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Guangzhou Basic and Applied Basic Foundation (202201010725), the Fundamental Research Funds for the Central Universities (No. 21622318), and the National Natural Science Foundation of China (Nos. 81873064 and 81773965).

Author information

Authors and Affiliations

Authors

Contributions

Ni S, Li Q, Chen Y, Yuan L, Lu N, and Zhou Z carry out the in vitro research. Shi F, Wong T, Xu R, Gan Y, Li Y, and Xu L performed the animal model experiments. Ouyang D and Hu B conceived and supervised the project. Ouyang D, and He X designed this study. Ni S, Hu B, Ouyang D, and He X analyzed the data. Ni S, Ouyang D, and He X prepared and edited the manuscript. All authors contributed to the article and approved the submitted version. We also thank Prof. Yong-tang Zheng for his kindly help in this study.

Corresponding authors

Correspondence to Xian-hui He, Bo Hu or Dong-yun Ouyang.

Ethics declarations

Ethics Approval

The animal experiment was reviewed and approved by the Committee on the Ethics of Animal Experiments of Jinan University.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

All authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4610 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, St., Li, Q., Chen, Y. et al. Anti-Necroptotic Effects of Itaconate and its Derivatives. Inflammation 47, 285–306 (2024). https://doi.org/10.1007/s10753-023-01909-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01909-z

KEY WORDS

Navigation