Abstract
Human apolipoprotein A-I (apoA-I) mimetic L-4F inhibits acute inflammation in endotoxemic animals. Since neutrophils play a crucial role in septic inflammation, we examined the effects of L-4F, compared to apoA-I, on lipopolysaccharide (LPS)-mediated activation of human neutrophils. We performed bioassays in human blood, isolated human neutrophils (incubated in 50 % donor plasma), and isolated human leukocytes (incubated in 5 and 50 % plasma) in vitro. In whole blood, both L-4F and apoA-I inhibited LPS-mediated elevation of TNF-α and IL-6. In LPS-stimulated neutrophils, L-4F and apoA-I (40 μg/ml) also decreased myeloperoxidase and TNF-α levels; however, L-4F tended to be superior in inhibiting LPS-mediated increase in IL-6 levels, membrane lipid rafts abundance and CD11b expression. In parallel experiments, when TNF-α and IL-8, instead of LPS, was used for cell stimulation, L-4F and/or apoA-I revealed only limited efficacy. In LPS-stimulated leukocytes, L-4F was as effective as apoA-I in reducing superoxide formation in 50 % donor plasma, and more effective in 5 % donor plasma (P < 0.05). Limulus ambocyte lysate (LAL) and surface plasmon resonance assays showed that L-4F neutralizes LAL endotoxin activity more effectively than apoA-I (P < 0.05) likely due to avid binding to LPS. We conclude that (1) direct binding/neutralization of LPS is a major mechanism of L-4F in vitro; (2) while L-4F has similar efficacy to apoA-I in anti-endotoxin effects in whole blood, it demonstrates superior efficacy to apoA-I in aqueous solutions and fluids with limited plasma components. This study rationalizes the utility of L-4F in the treatment of inflammation that is mediated by endotoxin-activated neutrophils.
Similar content being viewed by others
REFERENCES
Mantovani, A., M.A. Cassatella, C. Costantini, and S. Jaillon. 2011. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology 11(8): 519–531.
Brown, K.A., S.D. Brain, J.D. Pearson, J.D. Edgeworth, S.M. Lewis, and D.F. Treacher. 2006. Neutrophils in development of multiple organ failure in sepsis. Lancet 368(9530): 157–169.
Davies, M.J. 2011. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. Journal of Clinical Biochemistry and Nutrition 48(1): 8–19.
Munford, R.S. 2006. Severe sepsis and septic shock: the role of Gram-negative bacteremia. Annual Review of Pathology 1: 467–496.
Pasterkamp, G., J.K. Van Keulen, and D.P. De Kleijn. 2004. Role of toll-like receptor 4 in the initiation and progression of atherosclerotic disease. European Journal of Clinical Investigation 34(5): 328–334.
Zhou, X., X.P. Gao, J. Fan, Q. Liu, K.N. Anwar, R.S. Frey, and A.B. Malik. 2005. LPS activation of toll-like receptor 4 signals CD11b/CD18 expression in neutrophils. American Journal of Physiology - Lung Cellular and Molecular Physiology 288(4): L655–662.
Sorci-Thomas, M.G., and M.J. Thomas. 2012. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arteriosclerosis, Thrombosis, and Vascular Biology 32(11): 2561–2565.
Barter, P.J., S. Nicholls, K.A. Rye, G.M. Anantharamaiah, M. Navab, and A.M. Fogelman. 2004. Antiinflammatory properties of HDL. Circulation Research 95(8): 764–772.
Blackburn Jr., W.D., J.G. Dohlman, Y.V. Venkatachalapathi, D.J. Pillion, W.J. Koopman, J.P. Segrest, and G.M. Anantharamaiah. 1991. Apolipoprotein A-I decreases neutrophil degranulation and superoxide production. The Journal of Lipid Research 32(12): 1911–1918.
Liao, X.L., B. Lou, J. Ma, and M.P. Wu. 2005. Neutrophils activation can be diminished by apolipoprotein A-I. Life Sciences 77(3): 325–335.
Murphy, A.J., K.J. Woollard, A. Suhartoyo, R.A. Stirzaker, J. Shaw, D. Sviridov, and J.P. Chin-Dusting. 2011. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology 31(6): 1333–1341.
Levine, D.M., T.S. Parker, T.M. Donnelly, A. Walsh, and A.L. Rubin. 1993. In vivo protection against endotoxin by plasma high density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America 90(24): 12040–12044.
Yan, Y.J., Y. Li, B. Lou, and M.P. Wu. 2006. Beneficial effects of ApoA-I on LPS-induced acute lung injury and endotoxemia in mice. Life Sciences 79(2): 210–215.
Shah, P.K., J. Nilsson, S. Kaul, M.C. Fishbein, H. Ageland, A. Hamsten, J. Johansson, F. Karpe, and B. Cercek. 1998. Effects of recombinant apolipoprotein A-I (Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation 97(8): 780–785.
Pajkrt, D., J.E. Doran, F. Koster, P.G. Lerch, B. Arnet, T. van der Poll, J.W. ten Cate, and S.J. van Deventer. 1996. Antiinflammatory effects of reconstituted high-density lipoprotein during human endotoxemia. The Journal of Experimental Medicine 184(5): 1601–1608.
Nissen, S.E., T. Tsunoda, E.M. Tuzcu, P. Schoenhagen, C.J. Cooper, M. Yasin, G.M. Eaton, M.A. Lauer, W.S. Sheldon, C.L. Grines, S. Halpern, T. Crowe, J.C. Blankenship, and R. Kerensky. 2003. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290(17): 2292–2300.
Kitchens, R.L., P.A. Thompson, S. Viriyakosol, G.E. O’Keefe, and R.S. Munford. 2001. Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. The Journal of Clinical Investigation 108(3): 485–493.
Remaley, A.T., M. Amar, and D. Sviridov. 2008. HDL-replacement therapy: mechanism of action, types of agents and potential clinical indications. Expert Review of Cardiovascular Therapy 6(9): 1203–1215.
Garber, D.W., G. Datta, M. Chaddha, M.N. Palgunachari, S.Y. Hama, M. Navab, A.M. Fogelman, J.P. Segrest, and G.M. Anantharamaiah. 2001. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. The Journal of Lipid Research 42(4): 545–552.
Navab, M., G.M. Anantharamaiah, S.T. Reddy, S. Hama, G. Hough, V.R. Grijalva, N. Yu, B.J. Ansell, G. Datta, D.W. Garber, and A.M. Fogelman. 2005. Apolipoprotein A-I mimetic peptides. Arteriosclerosis, Thrombosis, and Vascular Biology 25(7): 1325–1331.
Gupta, H., L. Dai, G. Datta, D.W. Garber, H. Grenett, Y. Li, V. Mishra, M.N. Palgunachari, S. Handattu, S.H. Gianturco, W.A. Bradley, G.M. Anantharamaiah, and C.R. White. 2005. Inhibition of lipopolysaccharide-induced inflammatory responses by an apolipoprotein AI mimetic peptide. Circulation Research 97(3): 236–243.
Zhang, Z., G. Datta, Y. Zhang, A.P. Miller, P. Mochon, Y.F. Chen, J. Chatham, G.M. Anantharamaiah, and C.R. White. 2009. Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats. American Journal of Physiology - Heart and Circulatory Physiology 297(2): H866–873.
Kwon, W.Y., G.J. Suh, K.S. Kim, Y.H. Kwak, and K. Kim. 2012. 4F, apolipoprotein AI mimetic peptide, attenuates acute lung injury and improves survival in endotoxemic rats. Journal Trauma Acute Care Surgery 72(6): 1576–1583.
Sharifov, O.F., X. Xu, A. Gaggar, W.E. Grizzle, V.K. Mishra, J. Honavar, S.H. Litovsky, M.N. Palgunachari, C.R. White, G.M. Anantharamaiah, and H. Gupta. 2013. Anti-inflammatory mechanisms of apolipoprotein a-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis. PLoS One 8(5): e64486.
Madenspacher, J.H., K.M. Azzam, W. Gong, K.M. Gowdy, M.P. Vitek, D.T. Laskowitz, A.T. Remaley, J.M. Wang, and M.B. Fessler. 2012. Apolipoproteins and apolipoprotein mimetic peptides modulate phagocyte trafficking through chemotactic activity. The Journal of Biological Chemistry 287(52): 43730–43740.
Datta, G., M. Chaddha, S. Hama, M. Navab, A.M. Fogelman, D.W. Garber, V.K. Mishra, R.M. Epand, R.F. Epand, S. Lund-Katz, M.C. Phillips, J.P. Segrest, and G.M. Anantharamaiah. 2001. Effects of increasing hydrophobicity on the physical–chemical and biological properties of a class A amphipathic helical peptide. Journal of Lipid Research 42(7): 1096–1104.
Anantharamaiah, G.M., and D.W. Garber. 1996. Chromatographic methods for quantitation of apolipoprotein A-I. Methods in Enzymology 263: 267–282.
Smythies, L.E., C.R. White, A. Maheshwari, M.N. Palgunachari, G.M. Anantharamaiah, M. Chaddha, A.R. Kurundkar, and G. Datta. 2010. Apolipoprotein A-I mimetic 4F alters the function of human monocyte-derived macrophages. American Journal of Physiology - Cellular Physiology 298(6): C1538–1548.
White, C.R., L.E. Smythies, D.K. Crossman, M.N. Palgunachari, G.M. Anantharamaiah, and G. Datta. 2012. Regulation of pattern recognition receptors by the apolipoprotein A-I mimetic peptide 4F. Arteriosclerosis, Thrombosis, and Vascular Biology 32(11): 2631–2639.
Xu, X., P.L. Jackson, S. Tanner, M.T. Hardison, M. Abdul Roda, J.E. Blalock, and A. Gaggar. 2011. A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflammation. PLoS One 6(1): e15781.
Iovine, N.M., P. Elsbach, and J. Weiss. 1997. An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N- and C-terminal domains. Proceedings of the National Academy of Sciences of the United States of America 94(20): 10973–10978.
Sharifov, O.F., G. Nayyar, V.V. Ternovoy, V.K. Mishra, S.H. Litovsky, M.N. Palgunachari, D.W. Garber, G.M. Anantharamaiah, and H. Gupta. 2013. Cationic peptide mR18L with lipid lowering properties inhibits LPS-induced systemic and liver inflammation in rats. Biochemical and Biophysical Research Communications 436(4): 705–710.
Lehmann, V., M.A. Freudenberg, and C. Galanos. 1987. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and d-galactosamine-treated mice. The Journal of Experimental Medicine 165(3): 657–663.
Nowak, M., G.C. Gaines, J. Rosenberg, R. Minter, F.R. Bahjat, J. Rectenwald, S.L. MacKay, C.K. Edwards 3rd, and L.L. Moldawer. 2000. LPS-induced liver injury in D-galactosamine-sensitized mice requires secreted TNF-alpha and the TNF-p55 receptor. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 278(5): R1202–1209.
Lundahl, J., S.H. Jacobson, and J.M. Paulsson. 2012. IL-8 from local subcutaneous wounds regulates CD11b activation. Scandinavian Journal of Immunology 75(4): 419–425.
Olsson, S., and R. Sundler. 2006. The role of lipid rafts in LPS-induced signaling in a macrophage cell line. Molecular Immunology 43(6): 607–612.
Van Lenten, B.J., A.C. Wagner, C.L. Jung, P. Ruchala, A.J. Waring, R.I. Lehrer, A.D. Watson, S. Hama, M. Navab, G.M. Anantharamaiah, and A.M. Fogelman. 2008. Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. The Journal of Lipid Research 49(11): 2302–2311.
Malle, E., G. Marsche, J. Arnhold, and M.J. Davies. 2006. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochimica et Biophysica Acta 1761(4): 392–415.
Carr, A.C., and B. Frei. 2002. Human neutrophils oxidize low-density lipoprotein by a hypochlorous acid-dependent mechanism: the role of vitamin C. Biological Chemistry 383(3–4): 627–636.
Memon, R.A., I. Staprans, M. Noor, W.M. Holleran, Y. Uchida, A.H. Moser, K.R. Feingold, and C. Grunfeld. 2000. Infection and inflammation induce LDL oxidation in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology 20(6): 1536–1542.
Nayyar, G., V.K. Mishra, S.P. Handattu, M.N. Palgunachari, R. Shin, D.T. McPherson, C.C. Deivanayagam, D.W. Garber, J.P. Segrest, and G.M. Anantharamaiah. 2012. Sidedness of interfacial arginine residues and anti-atherogenicity of apolipoprotein A-I mimetic peptides. The Journal of Lipid Research 53(5): 849–858.
Aviram, M., M. Rosenblat, C.L. Bisgaier, R.S. Newton, S.L. Primo-Parmo, and B.N. La Du. 1998. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. Journal of Clinic Investment 101(8): 1581–1590.
Moren, X., S. Deakin, M.L. Liu, M.R. Taskinen, and R.W. James. 2008. HDL subfraction distribution of paraoxonase-1 and its relevance to enzyme activity and resistance to oxidative stress. The Journal of Lipid Research 49(6): 1246–1253.
Undurti, A., Y. Huang, J.A. Lupica, J.D. Smith, J.A. DiDonato, and S.L. Hazen. 2009. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. The Journal of Biological Chemistry 284(45): 30825–30835.
White, C.R., G. Datta, A.K. Buck, M. Chaddha, G. Reddy, L. Wilson, M.N. Palgunachari, M. Abbasi, and G.M. Anantharamaiah. 2012. Preservation of biological function despite oxidative modification of the apolipoprotein A-I mimetic peptide 4F. The Journal of Lipid Research 53(8): 1576–1587.
Lau, D., H. Mollnau, J.P. Eiserich, B.A. Freeman, A. Daiber, U.M. Gehling, J. Brummer, V. Rudolph, T. Munzel, T. Heitzer, T. Meinertz, and S. Baldus. 2005. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proceedings of the National Academy of Sciences of the United States of America 102(2): 431–436.
El Kebir, D., L. Jozsef, W. Pan, and J.G. Filep. 2008. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation. Circulation Research 103(4): 352–359.
Dai, L., G. Datta, Z. Zhang, H. Gupta, R. Patel, J. Honavar, S. Modi, J.M. Wyss, M. Palgunachari, G.M. Anantharamaiah, and C.R. White. 2010. The apolipoprotein A-I mimetic peptide 4F prevents defects in vascular function in endotoxemic rats. The Journal of Lipid Research 51(9): 2695–2705.
Yu, B., and S.D. Wright. 1996. Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14. The Journal of Biological Chemistry 271(8): 4100–4105.
Wurfel, M.M., S.T. Kunitake, H. Lichenstein, J.P. Kane, and S.D. Wright. 1994. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS. The Journal of Experimental Medicine 180(3): 1025–1035.
McDonald, M.C., P. Dhadly, G.W. Cockerill, S. Cuzzocrea, H. Mota-Filipe, C.J. Hinds, N.E. Miller, and C. Thiemermann. 2003. Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock. Shock 20(6): 551–557.
Baetta, R., and A. Corsini. 2010. Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis 210(1): 1–13.
Soehnlein, O. 2012. Multiple roles for neutrophils in atherosclerosis. Circulation Research 110(6): 875–888.
Wiedermann, C.J., S. Kiechl, S. Dunzendorfer, P. Schratzberger, G. Egger, F. Oberhollenzer, and J. Willeit. 1999. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck study. Journal of the American College of Cardiology 34(7): 1975–1981.
Bloedon, L.T., R. Dunbar, D. Duffy, P. Pinell-Salles, R. Norris, B.J. DeGroot, R. Movva, M. Navab, A.M. Fogelman, and D.J. Rader. 2008. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. The Journal of Lipid Research 49(6): 1344–1352.
Watson, C.E., N. Weissbach, L. Kjems, S. Ayalasomayajula, Y. Zhang, I. Chang, M. Navab, S. Hama, G. Hough, S.T. Reddy, D. Soffer, D.J. Rader, A.M. Fogelman, and A. Schecter. 2011. Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. The Journal of Lipid Research 52(2): 361–373.
Navab, M., S.T. Reddy, G.M. Anantharamaiah, S. Imaizumi, G. Hough, S. Hama, and A.M. Fogelman. 2011. Intestine may be a major site of action for the apoA-I mimetic peptide 4F whether administered subcutaneously or orally. The Journal of Lipid Research 52(6): 1200–1210.
Meriwether, D., S. Imaizumi, V. Grijalva, G. Hough, L. Vakili, G.M. Anantharamaiah, R. Farias-Eisner, M. Navab, A.M. Fogelman, S.T. Reddy, and I. Shechter. 2011. Enhancement by LDL of transfer of L-4F and oxidized lipids to HDL in C57BL/6 J mice and human plasma. The Journal of Lipid Research 52(10): 1795–1809.
Navab, M., S.T. Reddy, G.M. Anantharamaiah, G. Hough, G.M. Buga, J. Danciger, and A.M. Fogelman. 2012. D-4F-mediated reduction in metabolites of arachidonic and linoleic acids in the small intestine is associated with decreased inflammation in low-density lipoprotein receptor-null mice. The Journal of Lipid Research 53(3): 437–445.
ACKNOWLEDGMENTS
SPR experiments and data analysis was performed in Multidisciplinary Molecular Interaction Core (MMIC) facility (NIH Grant 1S10RR026935). This work was supported by NIH grants NHLBI K08HL085282 (H.G.), R01 HL102371 (A.G.), 5R01GM 082952 (C.R.W.), NHLBI HL 34343 (G.M.A.).
Dr. G.M. Anantharamaiah, who is inventor of the peptide L-4F and co-investigator, is a principal in Bruin Pharma, a start-up biotech company.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sharifov, O.F., Xu, X., Gaggar, A. et al. L-4F Inhibits Lipopolysaccharide-Mediated Activation of Primary Human Neutrophils. Inflammation 37, 1401–1412 (2014). https://doi.org/10.1007/s10753-014-9864-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10753-014-9864-7