[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Variable neighborhood search with ejection chains for the antibandwidth problem

  • Original Paper
  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

In this paper, we address the optimization problem arising in some practical applications in which we want to maximize the minimum difference between the labels of adjacent elements. For example, in the context of location models, the elements can represent sensitive facilities or chemicals and their labels locations, and the objective is to locate (label) them in a way that avoids placing some of them too close together (since it can be risky). This optimization problem is referred to as the antibandwidth maximization problem (AMP) and, modeled in terms of graphs, consists of labeling the vertices with different integers or labels such that the minimum difference between the labels of adjacent vertices is maximized. This optimization problem is the dual of the well-known bandwidth problem and it is also known as the separation problem or directly as the dual bandwidth problem. In this paper, we first review the previous methods for the AMP and then propose a heuristic algorithm based on the variable neighborhood search methodology to obtain high quality solutions. One of our neighborhoods implements ejection chains which have been successfully applied in the context of tabu search. Our extensive experimentation with 236 previously reported instances shows that the proposed procedure outperforms existing methods in terms of solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in GRASP: An experimental investigation. J. Heuristics 8, 343–373 (2002)

    Article  MATH  Google Scholar 

  • Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization problem. J. Heuristics 17, 39–60 (2011)

    Article  MATH  Google Scholar 

  • Burkard, R.E., Donnani, H., Lin, Y., Rote, G.: The obnoxious center problem on a tree. SIAM J. Discret. Math. 14(4), 498–590 (2001)

    Article  MATH  Google Scholar 

  • Cappanera, P.: A survey on obnoxious facility location problems. Technical Report TR-99-11, Dipartimento di Informatica, Università di Pisa (1999)

  • Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. J. ACM Comput. Surv. 34(3), 313–356 (2002)

    Article  Google Scholar 

  • Dobrev, S., Královic, R., Pardubská, D., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of Hamming graphs. Electron. Notes Discret. Math. 34, 295–300 (2009)

    Article  Google Scholar 

  • Duarte, A., Martí, R., Resende, M.G.C., Silva, R.M.A.: GRASP with path relinking heuristics for the antibandwidth problem. Networks 58(3), 171–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Duarte, A., Escudero, L.F., Martí, R., Mladenovic, N., Pantrigo, J.J., Sánchez-Oro, J.: Variable neighborhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247–3255 (2012)

    Article  MathSciNet  Google Scholar 

  • Glover, F., Laguna, M.: Tabu Search. Kluwer, Norwell (1997)

    Book  MATH  Google Scholar 

  • Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68, 1497–1514 (1980)

    Article  Google Scholar 

  • Hansen, P., Mladenovic, N., Brimberg, J., Moreno-Pérez, J.A.: Variable neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, 2nd edn, pp. 61–86. Springer, Heidelberg (2010)

  • Harwell-Boeing: http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/ (2011)

  • Leung, J.Y.-T., Vornberger, O., Witthoff, J.D.: On some variants of the bandwidth minimization problem. SIAM J. Comput. 13, 650–667 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Martí, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut problem. INFORMS J. Comput. 21(1), 26–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19, 651–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Pantrigo, J.J., Martí, R., Duarte, A., Pardo, E.G.: Scatter search for the cutwidth minimization problem. Ann. Oper. Res. 199(1), 285–304 (2012)

    Google Scholar 

  • Piñana, E., Plana, I., Campos, V., Martí, R.: GRASP and path relinking for the matrix bandwidth minimization. Eur. J. Oper. Res. 153, 200–210 (2004)

    Article  MATH  Google Scholar 

  • Raspaud, A., Schröder, H., Sykora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discret. Math. 309, 3541–3552 (2009)

    Article  MATH  Google Scholar 

  • Rego, C.: Node ejection chains for the vehicle routing problem: sequential and parallel algorithms. Parallel Comput. 27(3), 201–222 (2001)

    Article  MATH  Google Scholar 

  • Resende, M., Martí, R., Gallego, M., Duarte, A.: GRASP and path relinking for the max-min diversity problem. Comput. Oper. Res. 37, 498–508 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Rodriguez-Tello, E., Jin-Kao, H., Torres-Jimenez, J.: An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem. Comput. Oper. Res. 35(10), 3331–3346 (2008)

    Article  MATH  Google Scholar 

  • Török, L., Vrt’o, I.: Antibandwidth of 3-dimensional meshes. Electron. Notes Discret. Math. 28, 161–167 (2007)

    Article  Google Scholar 

  • Yixun, L., Jinjiang, Y.: The dual bandwidth problem for graphs. J. Zhengzhou Univ. 35, 1–5 (2003)

    MATH  Google Scholar 

  • Wang, X., Wu, X., Dumitrescu, S.: On explicit formulas for bandwidth and antibandwidth of hypercubes. Discret. Appl. Math. 157(8), 1947–1952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Ministerio de Ciencia e Innovación of Spain within the OPTSICOM project (http://www.optsicom.es/) with grant codes TIN2008-05854, TIN2009-07516, TIN2012-35632, and P08-TIC-4173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Martí.

Appendix

Appendix

Tables 67 and 8 report the comparison of the state-of-the-art methods over the set of instances with unknown optimum. We consider a time limit of 150 s per instance. Each table shows for each instance the best known value, Best val., the tightest upper bound (Yixun and Jinjiang 2003), UB, the relative deviation (in percentage) between the best known value and the upper bound, Dev, and finally the heuristic method (or methods) achieving these results.

Table 6 Best values, best methods and upper bounds per instance for Harwell-Boeing matrices
Table 7 Best values, best methods and upper bounds per instance for 3D grids
Table 8 Best values, best methods and upper bounds per instance for Caterpillars

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano, M., Duarte, A., Gortázar, F. et al. Variable neighborhood search with ejection chains for the antibandwidth problem. J Heuristics 18, 919–938 (2012). https://doi.org/10.1007/s10732-012-9213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-012-9213-7

Keywords

Navigation