[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Simple ingredients leading to very efficient heuristics for the maximum clique problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Starting from an algorithm recently proposed by Pullan and Hoos, we formulate and analyze iterated local search algorithms for the maximum clique problem. The basic components of such algorithms are a fast neighbourhood search (not based on node evaluation but on completely random selection) and simple, yet very effective, diversification techniques and restart rules. A detailed computational study is performed in order to identify strengths and weaknesses of the proposed algorithms and the role of the different components on several classes of instances. The tested algorithms are very fast and reliable: most of the DIMACS benchmark instances are solved within very short CPU times. For one of the hardest tests, a new putative optimum was discovered by one of our algorithms. Very good performances were also shown on recently proposed and more difficult instances. It is important to remark that the heuristics tested in this paper are basically parameter free (the appropriate value for the unique parameter is easily identified and was, in fact, the same value for all problem instances used in this paper).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica 29(4), 610–637 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability—towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, suppl. vol. A, pp. 1–74 (1999)

  • Bomze, I.M., Pelillo, M., Stix, V.: Approximating the maximum weight clique using replicator dynamic. IEEE Trans. Neural Netw. 11(6), 1228–1241 (2000)

    Article  Google Scholar 

  • Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random graphs, in Johnson and Trick (1996)

  • Burer, S., Monteiro, R.D.C., Zhang, Y.: Maximum stable set formulations and heuristics based on continuous optimization. Math. Prog. 94, 137–166 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Busygin, S.: A new trust region technique for the maximum clique problem. Discrete Appl. Math. 154, 2080–2096 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Dukanovic, I., Rendl, F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Working paper, Univ. of Klagenfurt, available at http://www.optimization-online.org/DB_HTML/2005/03/1081.html (2005)

  • Fahle, T.: Simple and fast: improving a branch-and-bound algorithm for maximum clique. LNCS, vol. 2461, pp. 485–498 (2002)

  • Garey, M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Wiley, New York (1977)

    Google Scholar 

  • Grosso, A., Locatelli, M., Della Croce, F.: Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. J. Heuristics 10, 135–152 (2004)

    Article  Google Scholar 

  • Grosso, A., Locatelli, M., Pullan, W.J.: Short communication, larger cliques for a DIMACS test. http://www.optimization-online.org/DB_HTML/2005/02/1054.html (2005)

  • Gvozdenovic̀, N., Laurent, M.: Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. In: Integer Programming and Combinatorial Optimization: 11th International IPCO Conference. Lecture Notes in Computer Science, vols. 3509/2005, pp. 136–151. (2005)

  • Hansen, P., Mladenović, N., Urošević, D.: Variable neighborhood search for the maximum clique. Discrete Appl. Math. 145, 117–125 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Jagota, A., Sanchis, L.A.: Adaptive, restart, randomized greedy heuristics for maximum clique. J. Heuristics 7, 565–585 (2001)

    Article  MATH  Google Scholar 

  • Johnson, D.S., Trick, M. (eds.): Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series, vol. 26. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  • Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the maximum clique problem. Inform. Process. Lett. 95, 503–511 (2005)

    Article  MathSciNet  Google Scholar 

  • Östergard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120, 197–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Massaro, A., Pelillo, M., Bomze, I.M.: A complementary pivoting approach to the maximum weight clique problem. SIAM J. Optim 12(4), 928–948 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Pena, J., Vera, J., Zuluaga, L.: Computing the stability number of a graph via linear and semidefinite programming. Working Paper, Tepper School of Business, Carnegie Mellon Univ., available at http://www.optimization-online.org/DB_HTML/2005/04/1106.html (2005)

  • Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem. J. Artif. Intell. Res. 25, 159–185 (2006)

    MATH  Google Scholar 

  • Regin, J.-C.: Solving the maximum clique problem with constraint programming. In: LNCS, vol. 2883, pp. 634–648 (2003)

  • Sanchis, L., Jagota, A.: Some experimental and theoretical results on test case generators for the maximum clique problem. INFORMS J. Comput. 8(2), 87–102 (1996)

    Article  MATH  Google Scholar 

  • SAT’04 Competition, http://www.lri.fr/~simon/contest04/results/ (2004)

  • Schrijver, A.: A comparison of the Delsarte and Lovasz bounds. IEEE Trans. Inform. Theory 25, 425–429 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Shinano, Y., Fujie, T., Ikebe, Y., Hirabayashi, R.: Solving the maximum clique problem using PUBB. In: Proceedings 12th IPPS/ 9th SPDP, pp. 326–332 (1998)

  • Singh, A., Gupta, A.K.: A hybrid heuristics for the maximum clique problem. J. Heuristics 12, 5–22 (2006)

    Article  MATH  Google Scholar 

  • Solnon, C., Fenet, S.: A study of ACO capabilities for solving the maximum clique problem. J. Heuristics 12, 155–180 (2006)

    Article  MATH  Google Scholar 

  • Wood, D.R.: An algorithm for finding a maximum clique in a graph. Oper. Res. Lett. 21(5), 211–217 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Grosso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosso, A., Locatelli, M. & Pullan, W. Simple ingredients leading to very efficient heuristics for the maximum clique problem. J Heuristics 14, 587–612 (2008). https://doi.org/10.1007/s10732-007-9055-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-007-9055-x

Keywords

Navigation