[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Semaphorin 6C expression in innervated and denervated skeletal muscle

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Semaphorins are secreted or transmembrane proteins important for axonal guidance and for the structuring of neuronal systems. Semaphorin 6C, a transmembrane Semaphorin, has growth cone collapsing activity and is expressed in adult skeletal muscle. In the present study the expression of Semaphorin 6C mRNA and immunoreactivity has been compared in innervated and denervated mouse hind-limb and hemidiaphragm muscles. Microscopic localization of immunoreactivity was studied in innervated and denervated rat skeletal muscle. The results show that Semaphorin 6C mRNA expression and immunoreactivity on Western blots are down-regulated following denervation. The mRNA of Semaphorin 6C as well as immunoreactivity determined by Western blots are expressed in extrasynaptic as well as perisynaptic regions of muscle. Immunohistochemical studies, however, show Semaphorin 6C-like immunoreactivity to be concentrated at neuromuscular junctions. The results suggest a role for Semaphorin 6C in neuromuscular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson MJ, Fambrough DM (1983) Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. J Cell Biol 97:1396–1411

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt RR, Schachner M (2000) Chondroitin sulfates affect the formation of the segmental motor nerves in Zebrafish embryos. Dev Biol 221:206–219

    Article  PubMed  CAS  Google Scholar 

  • Billard C, Delaire S, Raffoux E, Bensussan A, Boumsell L (2000) Switch in the protein tyrosine phosphatase associated with human CD100 semaphorin at terminal B-cell differentiation stage. Blood 95:965–972

    PubMed  CAS  Google Scholar 

  • Burgaya F, Fontana X, Martínez A, Montolio M, Mingorance A, Simó S, del Rio JA, Soriano E (2006) Semaphorin 6C leads to GSK-3-dependent growth cone collapse and redistributes after entorhino-hippocampal axotomy. Mol Cell Neurosci 33:321–334

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt C, Müller M, Badde A, Garner CC, Gundelfinger ED, Püschel AW (2005) Semaphorin 4B interacts with the post-synaptic density protein PSD-95/SAP90 and is recruited to synapses through a C-terminal PDZ-binding motif. FEBS Lett 579:3821–3828

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Funkelstein L, Livet J, Rougon G, Henderson CE, Castellani V, Mann F (2005) A semaphorin code defines subpopulations of spinal motor neurons during mouse development. Eur J Neurosci 21:1767–1776

    Article  PubMed  Google Scholar 

  • De Winter F, Vo T, Stam FJ, Wisman LAB, Bär PR, Niclou SP, van Muiswinkel FL, Verhaagen J (2006) The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol Cell Neurosci 32:102–117

    Article  PubMed  Google Scholar 

  • De Wit J, Verhaagen J (2003) Role of semaphorins in the adult nervous system. Prog Neurobiol 71:249–267

    Article  PubMed  Google Scholar 

  • De Wit J, De Winter F, Klooster J, Verhaagen J (2005) Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol Cell Neurosci 29:40–55

    Article  PubMed  Google Scholar 

  • Eckhardt F, Behar O, Calautti E, Yonezawa K, Nishimoto I, Fishman MC (1997) A novel transmembrane semaphorin can bind c-src. Mol Cell Neurosci 9:409–419

    Article  PubMed  CAS  Google Scholar 

  • Feng T-P, Lu D-X (1965) New lights on the phenomenon of transient hypertrophy in the denervated hemidiaphragm of the rat. Sci Sin 14:1772–1784

    PubMed  CAS  Google Scholar 

  • Fertuck HC, Salpeter MM (1974) Localization of acetylcholine receptor by 125I-labelled α-bungarotoxin binding at mouse motor endplates. Proc Natl Acad Sci USA 71:1376–1378

    Article  PubMed  CAS  Google Scholar 

  • Festoff BW, Rao JS, Hantaï D (1991) Plasminogen activators and inhibitors in the neuromuscular system: III. The serpin protease nexin 1 is synthesized by muscle and localized at neuromuscular synapses. J Cell Physiol 147:76–86

    Article  PubMed  CAS  Google Scholar 

  • Fiore R, Püschel AW (2003) The function of semaphorins during nervous system development. Front Biosci 8:484–499

    Article  Google Scholar 

  • Godenschwege TA, Hu H, Shan-Crofts X, Goodman CS, Murphey RK (2002) Bi-directional signaling by semaphorin 1a during central synapse formation in Drosophila. Nat Neurosci 5:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Gutmann E, Haníková M, Hájek I, Klicpera M, Syrovy I (1966) The postdenervation hypertrophy of the diaphragm. Physiol Bohemoslov 15:508–524

    PubMed  CAS  Google Scholar 

  • Hantaï D, Rao JS, Festoff BW (1988) Serine proteases and serpins: their possible roles in the motor system. Rev Neurol 144:680–687

    PubMed  Google Scholar 

  • Huber AB, Kania A, Tran TS, Gu C, De Marco Garcia N, Lieberam I, Johnson D, Jessell TM, Ginty DD, Kolodkin AL (2005) Distinct roles for secreted semaphorin signaling in spinal motor axon guidance. Neuron 48:949–964

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S, Ohoka Y, Sugimoto H, Fujioka S, Amazaki M, Kurinami H, Miyazaki N, Tohyama M, Furuyama T (2001) Sema4C, a transmembrane semaphorin, interacts with a post-synaptic density protein, PSD-95. J Biol Chem 276:9174–9181

    Article  PubMed  CAS  Google Scholar 

  • Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, Flanagan JG, Yamaguchi Y, Sretavan DW, Giger RJ, Kolodkin AL (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44:961–975

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Chédotal A, Hanafusa H, Ujimasa Y, de Castro F, Goodman CS, Kimura T (1999) Cloning and characterization of a novel class VI semaphorin, semaphorin Y. Mol Cell Neurosci 13:9–23

    Article  PubMed  CAS  Google Scholar 

  • Klostermann A, Lutz B, Gertler F, Behl C (2000) The orthologous human and murine semaphorin 6A-1 proteins (SEMA6A-1/Sema6A-1) bind to the enabled/vasodilator-stimulated phosphoprotein-like protein (EVL) via a novel carboxyl-terminal zyxin-like domain. J Biol Chem 275:39647–39653

    Article  PubMed  CAS  Google Scholar 

  • Magnusson C, Högklint L, Libelius R, Tågerud S (2001) Expression of mRNA for plasminogen activators and protease nexin-1 in innervated and denervated mouse skeletal muscle. J Neurosci Res 66:457–463

    Article  PubMed  CAS  Google Scholar 

  • Magnusson C, Libelius R, Tågerud S (2003) Nogo (reticulon 4) expression in innervated and denervated mouse skeletal muscle. Mol Cell Neurosci 22:298–307

    Article  PubMed  CAS  Google Scholar 

  • Matthes DJ, Sink H, Kolodkin AL, Goodman CS (1995) Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Cell 81:631–639

    Article  PubMed  CAS  Google Scholar 

  • Nagase T, Nakayama M, Nakajima D, Kikuno R, Ohara O (2001) Prediction of the coding sequence of unidentified human genes. XX. The complete sequence of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 8:85–95

    Article  PubMed  CAS  Google Scholar 

  • Pasterkamp RJ, Giger RJ, Verhaagen J (1998) Regulation of semaphorin III/collapsin-1 gene expression during peripheral nerve regeneration. Exp Neurol 153:313–327

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Wei H, Zhai Y, Que H, Chen Q, Tang F, Wu Y, Xing G, Zhu Y, Liu S, Fan M, He F (2002) Identification, characterization, and functional study of the two novel human members of the semaphorin gene family. J Biol Chem 277:35574–35585

    Article  PubMed  CAS  Google Scholar 

  • Roncarati R, Di Chio M, Sava A, Terstappen GC, Fumagalli G (2001) Presynaptic localization of the small conductance calcium-activated potassium channel SK3 at the neuromuscular junction. Neuroscience 104:253–262

    Article  PubMed  CAS  Google Scholar 

  • Roos M, Schachner M, Bernhardt RR (1999) Zebrafish semaphorin Z1b inhibits growing motor axons in vivo. Mech Dev 87:103–117

    Article  PubMed  CAS  Google Scholar 

  • Schultze W, Eulenburg V, Lessmann V, Herrmann L, Dittmar T, Gundelfinger ED, Heumann R, Erdmann KS (2001) Semaphorin4F interacts with the synapse-associated protein SAP90/PSD-95. J Neurochem 78:482–489

    Article  PubMed  CAS  Google Scholar 

  • Semaphorin Nomenclature Committee (1999) Unified nomenclature for the semaphorins/collapsins. Semaphorin Nomenclature Committee. Cell 97:551–552

    Article  Google Scholar 

  • Sola OM, Martin AW (1953) Denervation hypertrophy and atrophy of the hemidiaphragm of the rat. Am J Physiol 172:324–332

    PubMed  CAS  Google Scholar 

  • Varela-Echavarría A, Tucker A, Püschel AW, Guthrie S (1997) Motor axon subpopulations respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron 18:193–207

    Article  PubMed  Google Scholar 

  • Winberg ML, Mitchell KJ, Goodman CS (1998) Genetic analysis of the mechanisms controlling target selection: complementary and combinatorial functions of netrins, semaphorins, and IgCAMs. Cell 93:581–591

    Article  PubMed  CAS  Google Scholar 

  • Wood SJ, Slater CR (1998) β-spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction. J Cell Biol 140:675–684

    Article  PubMed  CAS  Google Scholar 

  • Yu H-H, Araj HH, Ralls SA, Kolodkin AL (1998) The transmembrane semaphorin sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron 20:207–220

    Article  PubMed  CAS  Google Scholar 

  • Zhan W-Z, Sieck GC (1992) Adaptations of diaphragm and medial gastrocnemius muscles to inactivity. J Appl Physiol 72:1445–1453

    PubMed  CAS  Google Scholar 

  • Zhan W-Z, Farkas GA, Schroeder MA, Gosselin LE, Sieck GC (1995) Regional adaptations of rabbit diaphragm muscle fibers to unilateral denervation. J Appl Physiol 79:941–950

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Lennart Mellblom and Anita Jäderberg for providing access to cryostats at the County Hospital in Kalmar and to Dr. Caroline Magnusson for cloning the β-actin cDNA fragment. This work was supported by grants from the Faculty of Natural Sciences and Technology, University of Kalmar, the Crafoord Foundation, the Knowledge Foundation (KK-stiftelsen) and from Umeå University Hospital, Clinical Neuroscience Research Fund, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Tågerud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, A., Libelius, R. & Tågerud, S. Semaphorin 6C expression in innervated and denervated skeletal muscle. J Mol Hist 39, 5–13 (2008). https://doi.org/10.1007/s10735-007-9113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9113-6

Keywords

Navigation