[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fuzzy Reinforcement Learning Algorithm for Efficient Task Scheduling in Fog-Cloud IoT-Based Systems

  • Research
  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

In recent years, the number of IoT applications that require low latency has increased greatly. Traditional cloud servers cannot handle these applications due to strict latency requirements. Edge technologies like fog computing meet these applications’ latency needs. Computing infrastructure is near end-user devices in fog-cloud environments. There are numerous traditional methods for scheduling IoT applications on heterogeneous and distributed fog-cloud nodes in these fields. Research in machine learning and its applications in many fields has grown tremendously in recent years. Machine learning algorithms such as reinforcement learning (RL) can be used to learn and make decisions based on reward signals from the environment. The purpose of this paper is to present a Task Scheduling algorithm based on Fuzzy Reinforcement Learning (TSFRL) to allocate fog-cloud computing resources so as to meet the deadlines of IoT requests. The scheduling problem is initially formulated to reduce response times, costs, and energy consumption. Fuzzy logic is then used to prioritize tasks. Fog nodes and cloud nodes employ the on-policy reinforcement learning methodology to prioritize delay-sensitive tasks with a higher priority and delay-tolerant ones with a lower priority. The suggested strategy outperforms existing algorithms in response time, cost, energy usage, and percentage of deadlines met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Allaoui, T., Gasmi, K., Ezzedine, T.: Reinforcement learning based task offloading of IoT applications in fog computing: algorithms and optimization techniques. Cluster Comput. 27, 10299–10324 (2024). https://doi.org/10.1007/s10586-024-04518-z

    Article  MATH  Google Scholar 

  2. Bachiega, J., Costa, B., Carvalho, L.R., Rosa, M.J.F., Araujo, A.: Computational resource allocation in fog computing: a comprehensive survey. ACM Comput. Surv. 55(14s), 1–31 (2023). https://doi.org/10.1145/3586181

    Article  Google Scholar 

  3. Jalali Khalil Abadi, Z., Mansouri, N., Khalouie, M.: Task scheduling in fog environment — Challenges, tools & methodologies: A review. Comput. Sci. Rev. 48, 100550 (2023). https://doi.org/10.1016/j.cosrev.2023.100550

    Article  MathSciNet  Google Scholar 

  4. Zolghadri, M., Asghari, P., Dashti, S.E., Hedayati, A.: Resource allocation in Fog-Cloud Environments: State of the art. J. Netw. Comput. Appl. 227, 103891 (2024)

    Article  Google Scholar 

  5. Hou, H., Jawaddi, S.N.A., Ismail, A.: Energy efficient task scheduling based on deep reinforcement learning in cloud environment: A specialized review. Future Gener. Comput. Syst. 151, 214–231 (2023)

    Article  MATH  Google Scholar 

  6. Cao, S., et al.: Reinforcement learning based tasks offloading in vehicular edge computing networks. Comput. Netw. 234, 109894 (2023)

    Article  Google Scholar 

  7. Taheri-abed, S., Eftekhari Moghadam, A.M., Rezvani, M.H.: Machine learning-based computation offloading in edge and fog: a systematic review. Cluster Comput. 26(5), 3113–3144 (2023)

    Article  MATH  Google Scholar 

  8. Archana, R.: Multilevel scheduling mechanism for a stochastic fog computing environment using the HIRO model and RNN. Sustain. Comput.: Inf. Syst. 39, 100887 (2023)

    MATH  Google Scholar 

  9. Ghafari, R., Mansouri, N.: E-AVOA-TS: Enhanced African vultures optimization algorithm-based task scheduling strategy for fog–cloud computing. Sustain. Comput.: Inf. Syst. 40, 100918 (2023)

    MATH  Google Scholar 

  10. Jamil, B., Ijaz, H., Shojafar, M., Munir, K., Buyya, R.: Resource allocation and task scheduling in fog computing and internet of everything environments: A taxonomy, review, and future directions. ACM Comput. Surv. (CSUR) 54(11s), 1–38 (2022)

    Article  Google Scholar 

  11. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16. (2012)

  12. Hussain, M, Nabi, S., Hussain, M.: RAPTS: resource aware prioritized task scheduling technique in heterogeneous fog computing environment. Cluster Comput. 1–25 (2024)

  13. Fahimullah, M., Ahvar, S., Agarwal, M., Trocan, M.: Machine learning-based solutions for resource management in fog computing. Multimed. Tools Appl. 83(8), 1–27 (2023)

    Article  Google Scholar 

  14. Iftikhar, S., et al.: HunterPlus: AI based energy-efficient task scheduling for cloud–fog computing environments. Internet of Things 21, 100667 (2023). https://doi.org/10.1016/j.iot.2022.100667

    Article  Google Scholar 

  15. Ghafari, R., Mansouri, N.: An efficient task scheduling in fog computing using improved artificial hummingbird algorithm J. . Comput. Sci. 74, 102152 (2023)

    MATH  Google Scholar 

  16. Ramezani Shahidani, F., Ghasemi, A., Toroghi Haghighat, A., Keshavarzi, A.: Task scheduling in edge-fog-cloud architecture: a multi-objective load balancing approach using reinforcement learning algorithm. Computing 105(6), 1337–1359 (2023)

    Article  Google Scholar 

  17. Hoseiny, F., Azizi, S., Shojafar, M., Tafazolli, R.: Joint QoS-aware and cost-efficient task scheduling for fog-cloud resources in a volunteer computing system. ACM Trans. Int. Technol. (TOIT) 21(4), 1–21 (2021)

    Article  Google Scholar 

  18. Alizadeh, M.R., Khajehvand, V., Rahmani, A.M., Akbari, E.: Task scheduling approaches in fog computing: A systematic review. Int. J. Commun Syst 33(16), e4583 (2020)

    Article  MATH  Google Scholar 

  19. Guevara, J. C., Torres, R. da S., Bittencourt, L. F., da Fonseca, N. L. S.: QoS-aware task scheduling based on reinforcement learning for the cloud-fog continuum. In: GLOBECOM 2022–2022 IEEE Global Communications Conference, pp. 2328–2333. (2022)

  20. Ahmad, S., Shakeel, I., Mehfuz, S., Ahmad, J.: Deep learning models for cloud, edge, fog, and IoT computing paradigms: Survey, recent advances, and future directions. Comput. Sci. Rev. 49, 100568 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gasmi, R., Hammoudi, S., Lamri, M., Harous, S.: Recent Reinforcement Learning and Blockchain Based Security Solutions for Internet of Things: Survey. Wireless Pers. Commun. 132(2), 1307–1345 (2023)

    Article  Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press (2018)

    MATH  Google Scholar 

  23. Hortelano, D., et al.: A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems. J. Netw. Comput. Appl. 216, 103669 (2023)

    Article  MATH  Google Scholar 

  24. Zabihi, Z., Eftekhari Moghadam, A.M., Rezvani, M.H.: Reinforcement learning methods for computation offloading: a systematic review. ACM Comput. Surv. 56(1), 1–41 (2023)

    Article  MATH  Google Scholar 

  25. Al-Hamadani, M.N.A., Fadhel, M.A., Alzubaidi, L., Harangi, B.: Reinforcement learning algorithms and applications in healthcare and robotics: a comprehensive and systematic review. Sensors 24(8), 2461 (2024)

    Article  Google Scholar 

  26. Thakur, R., Sikka, G., Bansal, U., Giri, J., Mallik, S.: Deadline-aware and energy efficient IoT task scheduling using fuzzy logic in fog computing. Multimed. Tools Appl. 1–28 (2024). https://doi.org/10.1007/s11042-024-19509-w

  27. Zadeh, L.: Fuzzy sets. Inform Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  28. Al-Araji, Z.J., Ahmad, S.S.S., Kausar, N., Anis, F.G., Ozbilge, E., Cagin, T.: Fuzzy theory in fog computing: review, taxonomy, and open issues. IEEE Access 10, 126931–126956 (2022)

    Article  Google Scholar 

  29. Abdullah, L.: Fuzzy multi criteria decision making and its applications: a brief review of category. Procedia Soc. Behav. Sci. 97, 131–136 (2013)

    Article  MATH  Google Scholar 

  30. Jalali Khalil Abadi, Z., Mansouri, N.: A comprehensive survey on scheduling algorithms using fuzzy systems in distributed environments. Artif. Intell. Rev. 57(1), 4 (2024). https://doi.org/10.1007/s10462-023-10632-y

    Article  MATH  Google Scholar 

  31. Azizi, S., Shojafar, M., Abawajy, J., Buyya, R.: Deadline-aware and energy-efficient IoT task scheduling in fog computing systems: A semi-greedy approach. J. Netw. Comput. Appl. 201, 103333 (2022)

    Article  MATH  Google Scholar 

  32. Vijayalakshmi, V., Saravanan, M.: Reinforcement learning-based multi-objective energy-efficient task scheduling in fog-cloud industrial IoT-based systems. Soft. Comput. 27(23), 17473–17491 (2023)

    Article  Google Scholar 

  33. Mousavi, S., Mood, S.E., Souri, A., Javidi, M.M.: Directed search: a new operator in NSGA-II for task scheduling in IoT based on cloud-fog computing. IEEE Trans. Cloud Comput. 11(2), 2144–2157 (2022)

    Article  Google Scholar 

  34. Yadav, A.M., Tripathi, K.N., Sharma, S.C.: A bi-objective task scheduling approach in fog computing using hybrid fireworks algorithm J. . Supercomput. 78(3), 4236–4260 (2022)

    Article  MATH  Google Scholar 

  35. Raju, M.R., Mothku, S.K.: Delay and energy aware task scheduling mechanism for fog-enabled IoT applications: A reinforcement learning approach. Comput. Netw. 224, 109603 (2023)

    Article  Google Scholar 

  36. Abdel-Basset, M., Mohamed, R., Elhoseny, M., Bashir, A.K., Jolfaei, A., Kumar, N.: Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications. IEEE Trans. Industr. Inf. 17(7), 5068–5076 (2020)

    Article  Google Scholar 

  37. Hussain, S.M., Begh, G.R.: Hybrid heuristic algorithm for cost-efficient QoS aware task scheduling in fog–cloud environment. J. Comput. Sci. 64, 101828 (2022)

    Article  Google Scholar 

  38. Kumar, M.S., Karri, G.R.: Eeoa: cost and energy efficient task scheduling in a cloud-fog framework. Sensors 23(5), 2445 (2023)

    Article  MATH  Google Scholar 

  39. Zhao, W., Stankovic, J. A.: Performance analysis of FCFS and improved FCFS scheduling algorithms for dynamic real-time computer systems. In: 1989 Real-Time Systems Symposium, pp. 156–157. (1989)

  40. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.: Deadline scheduling for real-time systems: EDF and related algorithms 460. Springer Science & Business Media, Boston (1998)

    Book  MATH  Google Scholar 

  41. Aladwani, T.: Types of task scheduling algorithms in cloud computing environment. In: Scheduling problems-New applications and trends. (2020). https://doi.org/10.5772/intechopen.86873

  42. Er-raji, N., Benabbou, F., Eddaoui, A.: A new task scheduling algorithm for improving tasks execution time in cloud computing. In: Innovations in Smart Cities and Applications: Proceedings of the 2nd Mediterranean Symposium on Smart City Applications 2, pp. 298–304. (2018)

  43. Chen, X., et al.: A woa-based optimization approach for task scheduling in cloud computing systems. IEEE Syst. J. 14(3), 3117–3128 (2020)

    Article  MATH  Google Scholar 

  44. Zhou, Z., Li, F., Zhu, H., Xie, H., Abawajy, J.H., Chowdhury, M.U.: An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments. Neural Comput. Appl. 32, 1531–1541 (2020)

    Article  MATH  Google Scholar 

  45. Hoseiny, F., Azizi, S., Shojafar, M., Ahmadiazar, F., Tafazolli, R.: PGA: a priority-aware genetic algorithm for task scheduling in heterogeneous fog-cloud computing. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 1–6. (2021)

  46. Ghafari, R., Mansouri, N.: A novel energy-based task scheduling in fog computing environment: an improved artificial rabbits optimization approach. Cluster Comput. 27, 8413–8458 (2024). https://doi.org/10.1007/s10586-024-04396-5

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. Ghafari: Programming, software development, ideas N. Mansouri: Investigation, interpretation of the results, writing- original draft preparation.

Corresponding author

Correspondence to Najme Mansouri.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, R., Mansouri, N. Fuzzy Reinforcement Learning Algorithm for Efficient Task Scheduling in Fog-Cloud IoT-Based Systems. J Grid Computing 22, 66 (2024). https://doi.org/10.1007/s10723-024-09781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-024-09781-3

Keywords

Navigation